×

Eigenvalues and eigenvectors of tau matrices with applications to Markov processes and economics. (English) Zbl 1471.15004

The authors study the spectral properties of the generator of a matrix algebra in the context of matrix displacement decompositions. They derive precise asymptotics for the outliers and the associated eigenvectors. Further, they obtain determining equations for the eigenvalues and eigenvectors, with a focus on the hyperbolic equations for the outlier eigenpairs. The full eigendecomposition is constructed in a particular case. Finally, they present applications to queuing models, random walks, diffusion processes, and economics, with a special emphasis on wealth/income inequality and portfolio dynamics.

MSC:

15A18 Eigenvalues, singular values, and eigenvectors
15A30 Algebraic systems of matrices
15B05 Toeplitz, Cauchy, and related matrices
60K25 Queueing theory (aspects of probability theory)
60G50 Sums of independent random variables; random walks
60J60 Diffusion processes
91G10 Portfolio theory

Software:

Julia

References:

[1] Achdou, Y.; Buera, F. J.; Lasry, J.-M.; Lions, P.-L.; Moll, B., Partial differential equation models in macroeconomics, Philos. Trans. R. Soc. Lond. A, 372, Article 20130397 pp. (2014) · Zbl 1353.91027
[2] Achdou, Y.; Han, J.; Lasry, J.-M.; Lions, P.-L.; Moll, B., Income and wealth distribution in macroeconomics: a continuous-time approach (2017), National Bureau of Economic Research, Working Paper 23732
[3] Baldi, P., Stochastic Calculus: An Introduction Through Theory and Exercises (2017), Springer: Springer Cham · Zbl 1382.60001
[4] Benhabib, J.; Bisin, A., Skewed wealth distributions: theory and empirics, J. Econ. Lit., 56, 1261-1291 (2018)
[5] Benhabib, J.; Bisin, A.; Luo, M., Wealth distribution and social mobility in the US: a quantitative approach, Am. Econ. Rev., 109, 1623-1647 (2019)
[6] Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V. B., Julia: a fresh approach to numerical computing, SIAM Rev., 59, 65-98 (2017) · Zbl 1356.68030
[7] Bini, D., Matrix structures in queuing models, Lect. Notes Math., 2173, 65-159 (2016) · Zbl 1361.60082
[8] Bini, D.; Capovani, M.; Menchi, O., Metodi Numerici per l’Algebra Lineare (1988), Zanichelli: Zanichelli Bologna · Zbl 0697.65009
[9] Böttcher, A.; Grudsky, S. M., Spectral Properties of Banded Toeplitz Matrices (2005), SIAM: SIAM Philadelphia · Zbl 1089.47001
[10] Bozzo, E.; Di Fiore, C., On the use of certain matrix algebras associated with discrete trigonometric transforms in matrix displacement decomposition, SIAM J. Matrix Anal. Appl., 16, 312-326 (1995) · Zbl 0819.65017
[11] Campolieti, G.; Makarov, R. N., Financial Mathematics: A Comprehensive Treatment (2014), CRC Press: CRC Press Boca Raton · Zbl 1290.91001
[12] Ceccherini-Silberstein, T.; Scarabotti, F.; Tolli, F., Harmonic Analysis on Finite Groups: Representation Theory, Gelfand Pairs and Markov Chains (2008), Cambridge University Press: Cambridge University Press New York · Zbl 1149.43001
[13] Chang, H.-C.; Liu, S.-E.; Burridge, R., Exact eigensystems for some matrices arising from discretizations, Linear Algebra Appl., 430, 999-1006 (2009) · Zbl 1167.15006
[14] Da Fonseca, C. M.; Kouachi, S.; Mazilu, D. A.; Mazilu, I., A multi-temperature kinetic Ising model and the eigenvalues of some perturbed Jacobi matrices, Appl. Math. Comput., 259, 205-211 (2015) · Zbl 1390.15098
[15] Da Fonseca, C. M.; Kowalenko, V., Eigenpairs of a family of tridiagonal matrices: three decades later, Acta Math. Hung., 160, 376-389 (2020) · Zbl 1449.15012
[16] Da Fonseca, C. M.; Yilmaz, F., Some comments on k-tridiagonal matrices: determinant, spectra, and inversion, Appl. Math. Comput., 270, 644-647 (2015) · Zbl 1410.15053
[17] Ekström, S.-E.; Furci, I.; Garoni, C.; Manni, C.; Serra-Capizzano, S.; Speleers, H., Are the eigenvalues of the B-spline isogeometric analysis approximation of \(- \operatorname{\Delta} u = \lambda u\) known in almost closed form?, Numer. Linear Algebra Appl., 25, Article e2198 pp. (2018) · Zbl 1513.65454
[18] Gabaix, X., Power laws in economics and finance, Annu. Rev. Econ., 1, 255-293 (2009)
[19] Gabaix, X.; Lasry, J.-M.; Lions, P.-L.; Moll, B., The dynamics of inequality, Econometrica, 84, 2071-2111 (2016) · Zbl 1420.91061
[20] Garoni, C.; Serra-Capizzano, S., Generalized Locally Toeplitz Sequences: Theory and Applications, vol. I (2017), Springer: Springer Cham · Zbl 1376.15002
[21] Garoni, C.; Serra-Capizzano, S., Generalized Locally Toeplitz Sequences: Theory and Applications, vol. II (2018), Springer: Springer Cham · Zbl 1448.47004
[22] Giambene, G., Queuing Theory and Telecommunications: Networks and Applications (2014), Springer: Springer New York
[23] Horn, R. A.; Johnson, C. R., Matrix Analysis (2013), Cambridge University Press: Cambridge University Press New York · Zbl 1267.15001
[24] Kelley, W. G.; Peterson, A. C., Difference Equations: An Introduction with Applications (2001), Academic Press: Academic Press San Diego · Zbl 0970.39001
[25] Lawler, G. F., Introduction to Stochastic Processes (2006), CRC Press: CRC Press Boca Raton · Zbl 1105.60003
[26] Losonczi, L., Eigenvalues and eigenvectors of some tridiagonal matrices, Acta Math. Hung., 60, 309-322 (1992) · Zbl 0771.15004
[27] Luttmer, E. G.J., Selection, growth, and the size distribution of firms, Q. J. Econ., 122, 1103-1144 (2007) · Zbl 1179.91211
[28] Rózsa, P., On periodic continuants, Linear Algebra Appl., 2, 267-274 (1969) · Zbl 0174.31801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.