Bolten, Matthias; Ekström, Sven-Erik; Furci, Isabella; Serra-Capizzano, Stefano A note on the spectral analysis of matrix sequences via GLT momentary symbols: from all-at-once solution of parabolic problems to distributed fractional order matrices. (English) Zbl 1516.15005 ETNA, Electron. Trans. Numer. Anal. 58, 136-163 (2023). Summary: The first focus of this paper is the characterization of the spectrum and the singular values of the coefficient matrix stemming from the discretization of a parabolic diffusion problem using a space-time grid and secondly from the approximation of distributed-order fractional equations. For this purpose we use the classical GLT theory and the new concept of GLT momentary symbols. The first permits us to describe the singular value or eigenvalue asymptotic distribution of the sequence of the coefficient matrices. The latter permits us to derive a function that describes the singular value or eigenvalue distribution of the matrix of the sequence, even for small matrix sizes, but under given assumptions. The paper is concluded with a list of open problems, including the use of our machinery in the study of iteration matrices, especially those concerning multigrid-type techniques. Cited in 3 Documents MSC: 15A18 Eigenvalues, singular values, and eigenvectors 15B05 Toeplitz, Cauchy, and related matrices 34L20 Asymptotic distribution of eigenvalues, asymptotic theory of eigenfunctions for ordinary differential operators 65N22 Numerical solution of discretized equations for boundary value problems involving PDEs 35R11 Fractional partial differential equations Keywords:Toeplitz matrices; asymptotic distribution of eigenvalues and singular values; numerical solution; discretized equations; boundary value problems; fractional differential equations × Cite Format Result Cite Review PDF Full Text: DOI arXiv Link References: [1] M. ABBASZADEH,Error estimate of second-order finite difference scheme for solving the Riesz space distributed-order diffusion equation, Appl. Math. Lett., 88 (2019), pp. 179-185. · Zbl 1410.65351 [2] F. AVRAM,On bilinear forms in Gaussian random variables and Toeplitz matrices, Probab. Theory Related Fields, 79 (1988), pp. 37-45. · Zbl 0648.60043 [3] G. BARBARINO, C. GARONI,ANDS. SERRA-CAPIZZANO,Block generalized locally Toeplitz sequences: theory and applications in the unidimensional case, Electron. Trans. Numer. Anal., 53 (2020), pp. 28- · Zbl 1434.65032 [4] G. BARBARINO, C. GARONI,ANDS. SERRA-CAPIZZANO,Block generalized locally Toeplitz sequences: theory and applications in the multidimensional case, Electron. Trans. Numer. Anal., 53 (2020), pp. 113- 216.https://etna.ricam.oeaw.ac.at/vol.53.2020/pp113-216.dir/pp113-216.pdf · Zbl 1434.65033 [5] G. BARBARINO ANDS. SERRA-CAPIZZANO,Non-Hermitian perturbations of Hermitian matrix-sequences and applications to the spectral analysis of the numerical approximation of partial differential equations, Numer. Linear Algebra Appl., 27 (2020), Art. e2286, 31 pages. · Zbl 1474.65454 [6] R. BHATIA,Matrix Analysis, Springer, New York, 1997. · Zbl 0863.15001 [7] M. BOLTEN, S-E. EKSTRÖM, I. FURCI,ANDS. SERRA-CAPIZZANO,Toeplitz momentary symbols: definition, results, and limitations in the spectral analysis of structured matrices, Linear Algebra Appl., 651 (2022), pp. 51-82. · Zbl 1493.15035 [8] E. BOZZO ANDC. DIFIORE,On the use of certain matrix algebras associated with discrete trigonometric transforms in matrix displacement decomposition, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 312-326. · Zbl 0819.65017 [9] H. BREZIS,Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011. · Zbl 1220.46002 [10] R. CHAN ANDX. JIN,An Introduction to Iterative Toeplitz Solvers, SIAM, Philadelphia, 2007. · Zbl 1146.65028 [11] G. CALCAGNI,Towards multifractional calculusFront. Phys., 6 (2018), 6 pages. [12] M. CAPUTO,Diffusion with space memory modelled with distributed order space fractional differential equations, Ann. Geophys., 46 (2003), pp. 223-234. [13] M. CAPUTO ANDM. FABRIZIO,The kernel of the distributed order fractional derivatives with an application to complex materials, Fractal Fract., 1 (2017), 11 pages. [14] T. CECCHERINI-SILBERSTEIN, F. SCARABOTTI,ANDF. TOLLI,Harmonic Analysis on Finite Groups, Cambridge University Press, Cambridge, 2008. · Zbl 1149.43001 [15] W. DENG, B. LI, W. TIAN,ANDP. ZHANG,Boundary problems for the fractional and tempered fractional operators, Multiscale Model. Simul., 16 (2018), pp. 125-149. · Zbl 1391.60104 [16] W. DING, S. PATNAIK, S. SIDHARDH,ANDF. SEMPERLOTTI,Applications of distributed-order fractional operators: a review, Entropy, 23 (2021), Article 110, 42 pages. [17] M. DONATELLI, M. MAZZA,ANDS. SERRA-CAPIZZANO,Spectral analysis and structure preserving preconditioners for fractional diffusion equations, J. Comput. Phys., 307 (2016), pp. 262-279. · Zbl 1352.65305 [18] ,Spectral analysis and multigrid methods for finite volume approximations of space-fractional diffusion equations, SIAM J. Sci. Comput. 40 (2018), pp. A4007-A4039. · Zbl 1405.65161 [19] S.-E. EKSTRÖM, I. FURCI,ANDS. SERRA-CAPIZZANO,Exact formulae and matrix-less eigensolvers for block banded symmetric Toeplitz matrices, BIT, 58 (2018), pp. 937-968. · Zbl 1405.65051 [20] S.-E. EKSTRÖM,ANDC. GARONI,A matrix-less and parallel interpolation-extrapolation algorithm for computing the eigenvalues of preconditioned banded symmetric Toeplitz matrices, Numer. Algorithms, 80 (2019), pp. 819-848. · Zbl 1455.65051 [21] S.-E. EKSTRÖM, C. GARONI, A. JOZEFIAK,ANDJ. PERLA,Eigenvalues and eigenvectors of tau matrices with applications to Markov processes and economics. Linear Algebra Appl., 627 (2021), pp. 41-71. · Zbl 1471.15004 [22] C. ESTATICO ANDS. SERRA-CAPIZZANO,Superoptimal approximation for unbounded symbols, Linear Algebra Appl., 428 (2008), pp. 564-585. · Zbl 1137.65025 [23] C. GARONI ANDS. SERRA-CAPIZZANO,Generalized Locally Toeplitz Sequences: Theory and Applications. Vol 1, Springer, Cham, 2017. · Zbl 1376.15002 [24] ,Generalized Locally Toeplitz Sequences: Theory and Applications. Vol 2, Springer, Cham, 2018. · Zbl 1448.47004 [25] U. GRENANDER ANDG. SZEG ˝O,Toeplitz Forms and Their Applications, 2nd ed., Chelsea, New York, 1984. · Zbl 0611.47018 [26] M. MAZZA, S. SERRA-CAPIZZANO,ANDM. USMAN,Symbol-based preconditioning for Riesz distributedorder space-fractional diffusion equations, Electron. Trans. Numer. Anal., 54 (2021), pp. 499-513. https://etna.ricam.oeaw.ac.at/vol.54.2021/pp499-513.dir/pp499-513.pdf · Zbl 1501.65042 [27] M. K. NG,Iterative Methods for Toeplitz Systems, Oxford University Press, New York, 2004. · Zbl 1059.65031 [28] S. V. PARTER,On the distribution of the singular values of Toeplitz matrices, Linear Algebra Appl., 80 (1986), pp. 115-130. · Zbl 0601.15006 [29] M. A. POZIO ANDA. TESEI,On the uniqueness of bounded solutions to singular parabolic problems, Discrete Contin. Dyn. Syst., 13 (2005), pp. 117-137. · Zbl 1165.35403 [30] S. SERRA-CAPIZZANO, D. BERTACCINI,ANDG. H. GOLUB,How to deduce a proper eigenvalue cluster from a proper singular value cluster in the nonnormal case, SIAM J. Matrix Anal. Appl., 27 (2005), pp. 82-86. · Zbl 1088.65031 [31] A. TESEI ANDF. PUNZO,Uniqueness of solutions to degenerate elliptic problems with unbounded coefficients, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 26 (2009), pp. 2001-2024. · Zbl 1176.35087 [32] P. TILLI,A note on the spectral distribution of Toeplitz matrices, Linear and Multilinear Algebra, 45 (1998), pp. 147-159. · Zbl 0951.65033 [33] E. TYRTYSHNIKOV ANDN. ZAMARASHKIN,Spectra of multilevel Toeplitz matrices: advanced theory via simple matrix relationships, Linear Algebra Appl., 270 (1998), pp. 15-27. · Zbl 0890.15006 [34] N. ZAMARASHKIN ANDE. TYRTYSHNIKOV,Distribution of the eigenvalues and singular numbers of Toeplitz matrices under weakened requirements on the generating function. Sb. Mat., 188 (1997), · Zbl 0898.15007 [35] A. ZYGMUND,Trigonometric Series, Cambridge University Press, New York, 1959 · Zbl 0085.05601 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.