×

Fast Toeplitz eigenvalue computations, joining interpolation-extrapolation matrix-less algorithms and simple-loop theory. (English) Zbl 1503.15040

Authors’ abstract: Under appropriate technical assumptions, the simple-loop theory allows to derive various types of asymptotic expansions for the eigenvalues of Toeplitz matrices generated by a function \(f\). Independently and under the milder hypothesis that \(f\) is even and monotone over \([0, \pi]\), matrix-less algorithms have been developed for the fast eigenvalue computation of large Toeplitz matrices, within a linear complexity in the matrix order: behind the high efficiency of such algorithms there are the expansions predicted by the simple-loop theory, combined with the extrapolation idea. Here we focus our attention on a change of variable, followed by the asymptotic expansion of the new variable, and we adapt the matrix-less algorithm to the considered new setting. Numerical experiments show a higher precision (till machine precision) and the same linear computation cost, when compared with the matrix-less procedures already presented in the relevant literature. Among the advantages, we concisely mention the following: (a) when the coefficients of the simple-loop function are analytically known, the algorithm computes them perfectly; (b) while the proposed algorithm is better or at worst comparable to the previous ones for computing the inner eigenvalues, it is vastly better for the computation of the extreme eigenvalues; a mild deterioration in the quality of the numerical experiments is observed when dense Toeplitz matrices are considered, having generating function of low smoothness and not satisfying the simple-loop assumptions.

MSC:

15B05 Toeplitz, Cauchy, and related matrices
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
65D05 Numerical interpolation
47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
15A18 Eigenvalues, singular values, and eigenvectors
41A60 Asymptotic approximations, asymptotic expansions (steepest descent, etc.)

References:

[1] Ekström, S-E; Garoni, C.; Serra-Capizzano, S., Are the eigenvalues of banded symmetric Toeplitz matrices known in almost closed form?, Exper. Math., 27, 4, 478-487 (2018) · Zbl 1405.15037 · doi:10.1080/10586458.2017.1320241
[2] Ahmad, F.; Al-Aidarous, ES; Alrehaili, DA; Ekström, S-E; Furci, I.; Serra-Capizzano, S., Are the eigenvalues of preconditioned banded symmetric Toeplitz matrices known in almost closed form?, Numer. Algo., 78, 3, 867-893 (2018) · Zbl 1398.65055 · doi:10.1007/s11075-017-0404-z
[3] Ekström, S-E; Furci, I.; Garoni, C.; Manni, C.; Serra-Capizzano, S.; Speleers, H., Are the eigenvalues of the B-spline isogeometric analysis approximation of −Δu = λu known in almost closed form?, Numer. Linear Algebra Appl., 25, 5, 2198-34 (2018) · Zbl 1513.65454 · doi:10.1002/nla.2198
[4] Ekström, S-E; Furci, I.; Serra-Capizzano, S., Exact formulae and matrix-less eigensolvers for block banded Toeplitz-like matrices, BIT, 58, 4, 937-968 (2018) · Zbl 1405.65051 · doi:10.1007/s10543-018-0715-z
[5] Ekström, S-E; Garoni, C., A matrix-less and parallel interpolation-extrapolation algorithm for computing the eigenvalues of preconditioned banded symmetric Toeplitz matrices, Numer. Algor., 80, 819-848 (2019) · Zbl 1455.65051 · doi:10.1007/s11075-018-0508-0
[6] Bogoya, M.; Böttcher, A.; Grudsky, SM; Maximenko, EA, Eigenvalues of Hermitian Toeplitz matrices with smooth simple-loop symbols, J. Math. Anal. Appl., 422, 1308-1334 (2015) · Zbl 1302.65086 · doi:10.1016/j.jmaa.2014.09.057
[7] Bogoya, M.; Böttcher, A.; Grudsky, SM; Maximenko, EA, Eigenvectors of Hermitian Toeplitz matrices with smooth simple-loop symbols, Linear Algebra Appl., 493, 606-637 (2016) · Zbl 1331.47046 · doi:10.1016/j.laa.2015.12.017
[8] Böttcher, A.; Bogoya, M.; Grudsky, SM; Maksimenko, EA, Asymptotics of the eigenvalues and eigenvectors of Toeplitz matrices, Mat. Sb., 208, 11, 4-28 (2017) · Zbl 1388.15028
[9] Barrera, M.; Böttcher, A.; Grudsky, SM; Maximenko, EA, Eigenvalues of even very nice Toeplitz matrices can be unexpectedly erratic, Oper. Theory Adv. Appl., 268, 51-77 (2018)
[10] Bogoya, M., Serra-Capizzano, S.: Eigenvalue superposition expansion for Toeplitz matrix-sequences, generated by linear combinations of matrix-order dependent symbols, and applications to fast eigenvalue computations. arXiv:2112.11794 (2022)
[11] Barbarino, G.; Garoni, C.; Serra-Capizzano, S., Block generalized locally Toeplitz sequences: Theory and applications in the multidimensional case, Electron. Trans. Numer. Anal., 53, 113-216 (2020) · Zbl 1434.65033 · doi:10.1553/etna_vol53s113
[12] Barbarino, G.; Garoni, C.; Serra-Capizzano, S., Block generalized locally Toeplitz sequences: theory and applications in the unidimensional case, Electron. Trans. Numer. Anal., 53, 28-112 (2020) · Zbl 1434.65032 · doi:10.1553/etna_vol53s28
[13] Böttcher, A.; Silbermann, B., Introduction to large truncated Toeplitz matrices. Universitext, 258-258 (1999), Berlin: Springer, Berlin · Zbl 0916.15012 · doi:10.1007/978-1-4612-1426-7
[14] Garoni, C.; Serra-Capizzano, S., Generalized locally Toeplitz sequences: theory and applications, vol. I (2017), Berlin: Springer, Berlin · Zbl 1376.15002 · doi:10.1007/978-3-319-53679-8
[15] Garoni, C.; Serra-Capizzano, S., Generalized locally Toeplitz sequences: theory and applications, vol. II (2018), Berlin: Springer, Berlin · Zbl 1448.47004 · doi:10.1007/978-3-030-02233-4
[16] Grenander, U.; Szegő, G., Toeplitz forms and their applications. California Monographs in Mathematical Sciences (1984), New York: Chelsea Publishing Co, New York · Zbl 0611.47018
[17] Tyrtyshnikov, EE; Zamarashkin, NL, Spectra of multilevel Toeplitz matrices: advanced theory via simple matrix relationships, Linear Algebra Appl., 270, 15-27 (1998) · Zbl 0890.15006 · doi:10.1016/S0024-3795(97)80001-8
[18] Serra-Capizzano, S., The extension of the concept of the generating function to a class of preconditioned Toeplitz matrices, Linear Algebra Appl., 267, 139-161 (1997) · Zbl 0933.65038 · doi:10.1016/S0024-3795(97)82204-5
[19] Bogoya, M.; Grudsky, SM; Maximenko, EA, Eigenvalues of Hermitian Toeplitz matrices generated by simple-loop symbols with relaxed smoothness, Oper. Theory Adv. Appl., 259, 179-212 (2017) · Zbl 1468.15007
[20] Stoer, J.; Bulirsch, R., Introduction to Numerical Analysis (2010), Berlin: Springer, Berlin · Zbl 0423.65002
[21] Davis, PJ, Interpolation and approximation (1975), New York: Dover, New York · Zbl 0329.41010
[22] Kac, M.; Murdock, WL; Szegő, G., On the eigenvalues of certain Hermitian forms, J. Rational Mech. Anal., 2, 767-800 (1953) · Zbl 0051.30302
[23] Trench, WF, Asymptotic distribution of the spectra of a class of generalized kac-Murdock-Szegő matrices, Linear Algebra Appl., 294, 181-192 (1999) · Zbl 0942.15006 · doi:10.1016/S0024-3795(99)00080-4
[24] Trench, W.F.: Spectral decomposition of Kac-Murdock-Szegő matrices. The selected works of William F. Trench. http://works.bepress.com/william_trench/133(2010)
[25] Barrera, M.; Grudsky, SM, Asymptotics of eigenvalues for pentadiagonal symmetric Toeplitz matrices, Oper. Theory Adv. Appl., 259, 51-77 (2017) · Zbl 1365.15040
[26] Serra-Capizzano, S., An ergodic theorem for classes of preconditioned matrices, Linear Algebra Appl., 282, 1-3, 161-183 (1998) · Zbl 0935.65026 · doi:10.1016/S0024-3795(98)80002-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.