×

zbMATH — the first resource for mathematics

Another look at the evolution of material structures. (English) Zbl 1024.74006
Summary: The evolution of a distribution of material inhomogeneities is investigated by analyzing the evolution of the corresponding material connection. We also derive some general relations describing how the deformation of a material \(G\)-structure modifies the material connection associated with it. These relations are then analyzed for different material isotropy groups.

MSC:
74A99 Generalities, axiomatics, foundations of continuum mechanics of solids
74E05 Inhomogeneity in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Binz, E., Proceedings CIMRF-2001
[2] El\.zanowski, M., Mathematical Theory of Uniform Material Structures (1995)
[3] Epstein, M., J. Geometry and Physics 26 pp 127– (1998) · Zbl 0928.74009 · doi:10.1016/S0393-0440(97)00042-9
[4] Epstein, M., On material evolution laws
[5] Epstein, M., Math. Mech. Solids 4 (2) pp 251– (1999) · Zbl 1001.74508 · doi:10.1177/108128659900400206
[6] Epstein, M., Acta Mechanica 115 pp 119– (1996) · Zbl 0856.73008 · doi:10.1007/BF01187433
[7] Maugin, G. A., International J. Plasticity 14 (1) pp 109– (1998) · Zbl 0911.73028 · doi:10.1016/S0749-6419(97)00043-0
[8] Parry, G. P., Int. J. Solids Struct. 38 pp 1071– (2001) · Zbl 1007.74030 · doi:10.1016/S0020-7683(00)00074-3
[9] Davini, C., Arch. Rat. Mech. Anal. 96 pp 295– (1986) · Zbl 0623.73002 · doi:10.1007/BF00251800
[10] Davini, C., Int. J. Solids Struct. 38 pp 1169– (2001) · Zbl 1005.74020 · doi:10.1016/S0020-7683(00)00080-9
[11] Kobayashi, S., Foundations of Differential Geometry (1963) · Zbl 0119.37502
[12] Poor, W. A., Differential Geometric Structures (1981) · Zbl 0493.53027
[13] El\.zanowski, M., Rep. Math. Physics. 31 (3) pp 229– (1992) · Zbl 0785.73020 · doi:10.1016/0034-4877(92)90023-T
[14] El\.zanowski, M., J. Elasticity 23 (2) pp 167– (1990) · Zbl 0709.73002 · doi:10.1007/BF00054801
[15] Drechsler, W., Lecture Notes in Physics 67 (1977) · doi:10.1007/3-540-08350-2
[16] El\.zanowski, M., Geometry and Topology pp 134– (1989) · doi:10.1142/9789814434225_0009
[17] Wang, C.-C., Introduction to Rational Elasticity (1973) · Zbl 0308.73001
[18] Chern, S. S., Bull. Amer. Math. Soc. 72 pp 167– (1966) · Zbl 0136.17804 · doi:10.1090/S0002-9904-1966-11473-8
[19] Carter, R., Lectures on Lie Groups and Lie Algebras, London Mathematical Society Student Text 32 (1995) · Zbl 0832.22001 · doi:10.1017/CBO9781139172882
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.