×

A holographic study of the gauged NJL model. (English) Zbl 1372.81149

Summary: The Nambu Jona-Lasinio model of chiral symmetry breaking predicts a second order chiral phase transition. If the fermions in addition have non-abelian gauge interactions then the transition is expected to become a crossover as the NJL term enhances the IR chiral symmetry breaking of the gauge theory. We study this behaviour in the holographic dynamic AdS/QCD description of a non-abelian gauge theory with the NJL interaction included using Witten’s multi-trace prescription. We study the behaviour of the mesonic spectrum as a function of the NJL coupling and the ratio of the UV cut off scale to the dynamical scale of the gauge theory.

MSC:

81V05 Strong interaction, including quantum chromodynamics
81R40 Symmetry breaking in quantum theory
81T13 Yang-Mills and other gauge theories in quantum field theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Yamawaki, K.
[2] Nambu, Y.; Jona-Lasinio, G., Phys. Rev., 122, 345 (1961)
[3] Gross, D. J.; Wilczek, F., Phys. Rev. D, 8, 3633 (1973)
[4] Catterall, S.; Veernala, A., Phys. Rev. D, 87, 11, Article 114507 pp. (2013)
[5] Miransky, V. A.; Nonoyama, T.; Yamawaki, K., Mod. Phys. Lett. A, 4, 1409 (1989)
[6] Takeuchi, T., Phys. Rev. D, 40, 2697 (1989)
[7] King, S. F.; Ross, D. A., Phys. Lett. B, 236, 327 (1990)
[8] Rantaharju, J.; Drach, V.; Pica, C.; Sannino, F., Phys. Rev. D, 95, 1, Article 014508 pp. (2017)
[9] Appelquist, T.; Einhorn, M.; Takeuchi, T.; Wijewardhana, L. C.R., Phys. Lett. B, 220, 223 (1989)
[10] Gubser, S. S.; Klebanov, I. R.; Polyakov, A. M., Phys. Lett. B, 428, 105 (1998) · Zbl 1355.81126
[11] Erdmenger, J.; Evans, N.; Kirsch, I.; Threlfall, E., Eur. Phys. J. A, 35, 81-133 (2008)
[12] Filev, V. G.; Johnson, C. V.; Rashkov, R. C.; Viswanathan, K. S., J. High Energy Phys., 0710, Article 019 pp. (2007)
[13] Babington, J.; Erdmenger, J.; Evans, N. J.; Guralnik, Z.; Kirsch, I., Phys. Rev. D, 69, Article 066007 pp. (2004)
[14] Alvares, R.; Evans, N.; Kim, K. Y., Phys. Rev. D, 86, Article 026008 pp. (2012)
[15] Jarvinen, M., J. High Energy Phys., 1507, Article 033 pp. (2015)
[16] Kutasov, D.; Lin, J.; Parnachev, A., Nucl. Phys. B, 858, 155 (2012) · Zbl 1246.81276
[17] Jarvinen, M.; Sannino, F., J. High Energy Phys., 1005, Article 041 pp. (2010)
[18] Breitenlohner, P.; Freedman, D. Z., Ann. Phys., 144, 249 (1982) · Zbl 0606.53044
[19] Alho, T.; Evans, N.; Tuominen, K., Phys. Rev. D, 88, Article 105016 pp. (2013)
[20] Erdmenger, J.; Evans, N.; Scott, M., Phys. Rev. D, 91, 8, Article 085004 pp. (2015)
[21] Witten, E.
[22] Evans, N.; Kim, K. Y., Phys. Rev. D, 93, 6, Article 066002 pp. (2016)
[23] Londergan, J. T.; Nebreda, J.; Pelaez, J. R.; Szczepaniak, A., Phys. Lett. B, 729, 9 (2014)
[24] Jona-Lasinio, G., Nuovo Cimento, 34, 1790 (1964)
[25] Coleman, S. R.; Weinberg, E. J., Phys. Rev. D, 7, 1888 (1973)
[26] Bardeen, W. A.; Hill, C. T.; Lindner, M., Phys. Rev. D, 41, 1647 (1990)
[27] Farhi, E.; Susskind, L., Phys. Rep., 74, 277 (1981)
[28] Clemens, W.; Evans, N.; Scott, M., Holograms of a dynamical top quark
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.