×

A posteriori error estimation. (English) Zbl 0731.73095

We present a summary of error estimation and adaptivity techniques and concepts. We also present the major types of refinement or adaptation strategies. In Section 3, we discuss the need for efficiency in large- scale, time-dependent problems and discuss recent effective local spatial and temporal adaptive strategies for these problems. We then discuss domain decomposition techniques for developing adaptive strategies on large fluid flow problems with various work measure criteria.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
74P10 Optimization of other properties in solid mechanics
76M30 Variational methods applied to problems in fluid mechanics
65N15 Error bounds for boundary value problems involving PDEs
49M27 Decomposition methods
74S05 Finite element methods applied to problems in solid mechanics
74S20 Finite difference methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Babuška, I., Adaptive mathematical modeling, (Flaherty, J. E.; Paslow, P. J.; Shephard, M. S.; Vasilakis, J. D., Adaptive Methods for Partial Differential Equations (1989), SIAM: SIAM Philadelphia, PA), 1-14 · Zbl 0696.65082
[2] Diaz, A. R.; Kikuchi, N.; Taylor, J. E., A method of grid optimization for finite element methods, Comput. Methods. Appl. Mech. Engng., 41, 29-45 (1983) · Zbl 0509.73071
[3] Demkowicz, L.; Oden, J. T.; Devloo, P., An \(h\)-type mesh refinement strategy based on a minimization of interpolation error, Comput. Methods Appl. Mech. Engng., 53, 67-89 (1985) · Zbl 0556.73081
[4] Demkowicz, L.; Oden, J. T., On a mesh optimization method based on a minimization of interpolation error, Internat. I. Engng. Sci., 24, 55-68 (1986) · Zbl 0591.65009
[5] Oden, J. T.; Demkowicz, L.; Westermann, L.; Rachowicz, W., Toward a universal \(h-p\) adaptive finite element strategy, Part 2. A posteriori error estimates, Comput. Methods Appl. Mech. Engrg., 77, 113-180 (1989) · Zbl 0723.73075
[6] K. Eriksson and C. Johnson, An adaptive method for linear elliptic problems, Technical Report 1985-13, Math. Dept., Chalmers University of Technology; and Math. Comp., to appear.; K. Eriksson and C. Johnson, An adaptive method for linear elliptic problems, Technical Report 1985-13, Math. Dept., Chalmers University of Technology; and Math. Comp., to appear. · Zbl 0644.65080
[7] Eriksson, K.; Johnson, C.; Lennblad, J., Error estimates and automatic time and space step control for linear parabolic problems, (Technical Report (1986), Math. Dept., Chalmers University of Technology) · Zbl 0626.65101
[8] and SIAM J. Numer. Anal., to appear.; and SIAM J. Numer. Anal., to appear.
[9] C. Johnson, Y.Y. Nie and V. Thomée, An a posteriori estimate and automatic time step control for a backward Euler discretization of a parabolic problem, Technical Report 1985-23, Math. Dept., Chalmers University of Technology; and SIAM J. Numer. Anal., to appear.; C. Johnson, Y.Y. Nie and V. Thomée, An a posteriori estimate and automatic time step control for a backward Euler discretization of a parabolic problem, Technical Report 1985-23, Math. Dept., Chalmers University of Technology; and SIAM J. Numer. Anal., to appear.
[10] Shephard, M. S., Approaches to the automatic generation and control of finite element meshes, Appl. Mech. Rev., 41, 169-185 (1988)
[11] Shephard, M. S.; Baehmann, P. L.; Grice, K. R., The versatility of automatic mesh generators based on tree structures and advanced geometric constructs, Comm. Appl. Numer. Methods, 4, 379-392 (1988) · Zbl 0638.73041
[12] Bachmann, P. L.; Wittchen, S. L.; Shephard, M. S.; Grice, K. R.; Yerry, M. A., Robust geometrically based automatic two-dimensional mesh generation, Internat. J. Numer Math. Energy, 24, 1043-1078 (1987) · Zbl 0618.65116
[13] Babuška, I., Feedback, adaptivity and a posteriori estimates in finite elements: Aims, theory, and experience,, (Babuška, I.; Zienkiewicz, O. C.; Gago, J.; e Oliveira, E. R.Arantes, Accuracy Estimates and Adaptive Refinements in Finite Element Computations (1986), Wiley: Wiley New York)
[14] Babuška, I.; Vogelius, M., Feedback and adaptive finite element solution of one-dimensional boundary value problems, Numer. Math., 44, 75-102 (1984) · Zbl 0574.65098
[15] Gui, W.; Babuška, I., the \(h, p\), and \(h-p\) versions of the finite element method in one dimension, 3: The adaptive \(h-p\) version, Numer. Math., 48, 658-683 (1986) · Zbl 0614.65090
[16] Babuška, I.; Rheinboldt, W. C., A posteriori error analysis of finite element solutions for one-dimensional problems, SIAM J. Numer. Anal., 18, 565-589 (1981) · Zbl 0487.65060
[17] Babuška, I.; Miller, A., A posteriori error estimate and adaptive techniques for the finite element method, (Technical Note BN-968 (1981), Institute for Physical Science and Technology, University of Maryland)
[18] Babuška, I.; Yu, D., Asymptotically exact a posteriori error estimator for biquadratic elements, (Technical Note BN-1050 (1986), Institute for Physical Science and Technology, University of Maryland) · Zbl 0619.73080
[19] Bank, R. E.; Weiser, A., Some a posteriori error estimates for elliptic partial differential equations, Math. Comp., 44, 283-301 (1985) · Zbl 0569.65079
[20] Babuška, I.; Dorr, M. R., Error estimates for the combined \(h\) and \(p\) versions of the finite element method, (Technical Report BN-951 (1980), Institute for Physical Sciences and Technology, University of Maryland: Institute for Physical Sciences and Technology, University of Maryland College, Park, Maryland) · Zbl 0487.65058
[21] Babuška, I.; Rheinboldt, W. C., A-posteriori error estimates for the finite element method, Internat. J. Numer. Methods Engrg., 12, 1597-1615 (1978) · Zbl 0396.65068
[22] Babuška, I.; Rheinboldt, W. C., Reliable error estimation and mesh adaptation for the finite element method, (Oden, J. T., Computational Methods in Nonlinear Mechanics (1984), North-Holland: North-Holland New York) · Zbl 0451.65078
[23] Babuška, I.; Rheinboldt, W. C., A survey of a-posteriori error estimators and adaptive approach in the finite element method, (Technical Report BN-1981 (1982), Laboratory for Numerical Analysis, University of Maryland: Laboratory for Numerical Analysis, University of Maryland College Park, Maryland) · Zbl 0396.65068
[24] Babuška, I.; Szabó, B. A.; Katz, I. N., The \(p\)-version of the finite element methid, SIAM J. Numer. Anal., 18, 515-545 (1981) · Zbl 0487.65059
[25] Bank, R. E., Locally computed error estimates for elliptic equations, (e Oliveira, E. R.Arantes; Babuška, I.; Zienkiewicz, O. C.; Gago, J. P., Proceedings International Conference on Accuracy Estimates and Adaptive Refinements in Finite Element Computations, Vol. 1 (1981)), 21-30, Lisbon, Portugal
[26] Bank, R. E.; Sherman, A. H., PLTMG users’ guide, (Technical Report No. 152 (1979), Center for Numerical Analysis, University of Texas at Austin)
[27] Oden, J. T.; Demkowicz, L.; Strouboulis, T., Adaptive finite element methods for flow problems with moving boundaries, Part I: Variational principles and a posteriori estimates, Comput. Methods Appl. Mech. Engrg., 46, 217-251 (1984) · Zbl 0583.76025
[28] Oden, J. T.; Strouboulis, T.; Devloo, P.; Howe, M., Recent advances in error estimation and adaptive improvement of finite element calculations, (Noor, A. K., Computational Mechanics Advances and Trends, Vol. 75 (1986), ASME: ASME New York), 369-400
[29] Zienkiewicz, O. C.; Craig, A. W., Adaptive mesh refinement and a posteriori error estimation for the \(p\)-version of the finite element method, (Babuška, I.; Chandra, J.; Flaherty, J. E., Adaptive Computational Methods for Partial Differential Equations (1983), SIAM: SIAM Philadelphia, PA), 33-57 · Zbl 0564.65070
[30] Zienkiewiez, O. C.; Zhu, J. Z., A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. Numer. Methods Engrg., 24, 337-357 (1987) · Zbl 0602.73063
[31] Zienkiewicz, O. C.; Zhu, J. Z.; Liu, Y. C.; Morgan, K.; Peraire, J., Error estimates and adaptivity from elasticity to high speed compressible flow, (Whiteman, J. R., MAFELAP VI (1988), Academic Press: Academic Press London), 483-512 · Zbl 0688.73059
[32] M. Ainsworth, J.Z. Zhu, A.W. Craig and O.C. Zienkiewicz, Analysis of the Zienkiewicz-Zhu a posteriori error estimator in the finite element method, Internat. J. Numer. Methods Engrg., to appear.; M. Ainsworth, J.Z. Zhu, A.W. Craig and O.C. Zienkiewicz, Analysis of the Zienkiewicz-Zhu a posteriori error estimator in the finite element method, Internat. J. Numer. Methods Engrg., to appear. · Zbl 0716.73082
[33] Zienkiewicz, O. C.; Zhu, J. Z.; Craig, A. W.; Ainsworth, M., Simple and practical error estimation and adaptivity: \(h\) and \(h-p\) version procedures, (Flaherty, J. E.; Paslow, P. J.; Shephard, M. S.; Vasilakis, J. D., Adaptive Methods for Partial Differential Equations (1989), SIAM: SIAM Philadelphia, PA), 100-114 · Zbl 0693.73047
[34] Adjerid, S.; Flaherty, J. E., A moving finite element method with error estimation and refinement for one-dimensional time dependent partial differential equations, SIAM J. Numer. Anal., 23, 779-796 (1986) · Zbl 0612.65071
[35] Arney, D. C.; Flaherty, J. E., A two-dimensional mesh moving technique for time-dependent partial differential equations, J. Comput. Phys., 67, 124-144 (1986) · Zbl 0614.65128
[36] Coyle, J. M.; Flaherty, J. E.; Ludwig, R., On the stability of mesh equidistribution strategies for time-dependent partial differential equations, J. Comput. Phys., 62, 26-39 (1986) · Zbl 0579.65122
[37] Adjerid, S.; Flaherty, J. E., Second-order finite element approximations and a posteriori error estimation for two-dimensional parabolic systems, Numer. Math., 53, 183-198 (1988) · Zbl 0628.65104
[38] Noor, A. K.; Babuška, I., Quality assessment and control of finite element solutions, Finite Elements Anal. Des., 3, 1-26 (1987) · Zbl 0608.73072
[39] Oden, J. T.; Demkowicz, L., Advances in adaptive improvements: A survey of adaptive methods in computational fluid mechanics, (Noor, A. K.; Oden, J. T., State of the Art Surveys in Computational Mechanics (1988), ASME: ASME New York) · Zbl 0833.73052
[40] J.T. Oden, Notes on a posteriori error estimates for finite element approximations of boundary and initial-value problems, in preparation.; J.T. Oden, Notes on a posteriori error estimates for finite element approximations of boundary and initial-value problems, in preparation.
[41] Weiser, A., Local-mesh, local-order, adaptive finite element methods with a posteriori error estimates for elliptical partial differential equations, (Technical Report No. 213 (1981), Department of Computer Science, Yale University: Department of Computer Science, Yale University New Haven, Connecticut)
[42] Miller, K.; Miller, R. N., Moving finite elements, II, SIAM J. Numer. Anal., 18, 1033-1057 (1981) · Zbl 0518.65083
[43] Demkowicz, L.; Oden, J. T., An adaptive characteristic Petrov-Galerkin finite element method for convection-dominated linear and nonlinear problems in two space variables, Comput. Methods Appl. Mech. Engrg., 55, 63-87 (1986) · Zbl 0602.76097
[44] Guo, B.; Babuška, I., The \(h-p\) version of the finite element method: I, J. Comput. Mech., 1, 21-42 (1986) · Zbl 0634.73058
[45] Diaz, J. C.; Ewing, R. E.; Jones, R. W.; McDonald, A. E.; Uhler, L. M.; von Rosenberg, D. U., Self-adaptive local grid refinement for time-dependent, two-dimensional simulation, (Carey, G. F.; Gallagher, R. H.; Oden, J. T.; Zienkiewicz, O. C., Finite elements in Fluids, Vol. VI (1985), Wiley: Wiley New York), 279-290
[46] Diaz, J. C.; Ewing, R. E., Potential of HEP-like MIMD architectures in self adaptive local grid refinement for accurate simulation of physical processes, (Proceedings Workshop on Parallel Processing Using the HEP. Proceedings Workshop on Parallel Processing Using the HEP, Norman, Oklahoma (1985))
[47] Rhienboldt, W. C.; Mesztenyi, C. K., On a data structure for adaptive finite-element mesh refinement, Trans. Math. Software, 6, 166-187 (1980) · Zbl 0437.65081
[48] Macedo, C. G.; Diaz, J. C.; Ewing, R. E., A knowledge-based system for the determination of activity indicators for self-adaptive grid methods, Math. Comput. Simulation, 32, 431-439 (1989)
[49] and in: E. Houstis, J. Rice and R. Vichnevetsky, eds., Fourth Generation Mathematical Software Systems, to appear.; and in: E. Houstis, J. Rice and R. Vichnevetsky, eds., Fourth Generation Mathematical Software Systems, to appear.
[50] Berger, M. J., Data structures for adaptive mesh refinement, (Babuška, I.; Chandra, J.; Flaherty, J. E., Adaptive Computational Methods for Partial Differential Equations (1983), SIAM: SIAM Philadelphia, PA), 237-251
[51] Berger, M. J.; Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, (Man. NA-83-02 (1983), Computer Science Department, Stanford University: Computer Science Department, Stanford University California) · Zbl 0536.65071
[52] Ewing, R. E.; Boyett, B. A.; Babu, D. K.; Heinemann, R. F., Efficient use of locally refined grids for multiphase reservoir simulation, (SPIE 18413, Proceedings Tenth SPE Symposium on Reservoir Simulation. SPIE 18413, Proceedings Tenth SPE Symposium on Reservoir Simulation, Houston, Texas (1989)), 55-70
[53] R.E. Ewing, B.A. Boyett and M.S. El-Mandouh, Local grid refinement for reservoir simulation, Proceedings SIAM Conference on Mathematical and Computational Issues in Geophysical Fluid and Solid Mechanics (SIAM, Philadelphia, PA), submitted.; R.E. Ewing, B.A. Boyett and M.S. El-Mandouh, Local grid refinement for reservoir simulation, Proceedings SIAM Conference on Mathematical and Computational Issues in Geophysical Fluid and Solid Mechanics (SIAM, Philadelphia, PA), submitted.
[54] Espedal, M.; Ewing, R. E., Characteristic Petrov-Galerkin subdomain methods for two-phase immiscible flow, Comput. Methods Appl. Mech. Engrg., 64, 113-135 (1987) · Zbl 0607.76103
[55] Dahle, H. K.; Espedal, M. S.; Ewing, R. E., Characteristic Petrov-Galerkin subdomain methods for convection diffusion problems, (Wheeler, M. F., IMA Volume 11, Numerical Simulation in Oil Recovery (1988), Springer: Springer Berlin), 77-88 · Zbl 0699.76099
[56] H.K. Dahle, M.S. Espedal, R.E. Ewing and O. Saevareid, Characteristic adaptive subdomain methods for reservoir flow problems, Numerical Solutions of Partial Differential Equations, to appear.; H.K. Dahle, M.S. Espedal, R.E. Ewing and O. Saevareid, Characteristic adaptive subdomain methods for reservoir flow problems, Numerical Solutions of Partial Differential Equations, to appear. · Zbl 0707.76093
[57] Ewing, R. E.; Espedal, M. S.; Russell, T. F.; Saevareid, O., Reservoir simulation using mixed methods, a modified method of characteristics, and local grid refinement, (Proceedings Joint IMA/SPE European Conference on the Mathematics of Oil Recovery (1989), Robinson College, Cambridge University), to appear
[58] R.E. Ewing, R.D. Lazarov amd P.S. Vassilevski, Finite difference schemes for parabolic problems on grids with local refinement in time and space with local refinement in time and in space, Computing, submitted.; R.E. Ewing, R.D. Lazarov amd P.S. Vassilevski, Finite difference schemes for parabolic problems on grids with local refinement in time and space with local refinement in time and in space, Computing, submitted. · Zbl 0829.65112
[59] R.E. Ewing, P. Jacobs, R. Parashkevov and J. Shen, Applications of adaptive grid refinement methods, Proceedings Fifth IIMAS Workshop on Numerical Analysis (SIAM, Philadelphia, PA) to appear.; R.E. Ewing, P. Jacobs, R. Parashkevov and J. Shen, Applications of adaptive grid refinement methods, Proceedings Fifth IIMAS Workshop on Numerical Analysis (SIAM, Philadelphia, PA) to appear. · Zbl 0742.65082
[60] Bramble, J.; Ewing, R. E.; Pasciak, J.; Schatz, A., A preconditioning technique for the efficient solution of problems with local grid refinement, Comput. Methods Appl. Mech. Engrg., 67, 149-159 (1988) · Zbl 0619.76113
[61] McCormick, S.; Thomas, J., The fast adaptive composite grid method for elliptic boundary value problems, Math. Comp., 46, 439-456 (1986) · Zbl 0594.65078
[62] Mandel, J.; McCormick, S., Iterative solution of elliptic equations with refinements: The two-level case, (Proceedings Second International Symposium on Domain Decomposition Methods. Proceedings Second International Symposium on Domain Decomposition Methods, Los Angeles, California (1988)), to appear
[63] Ewing, R. E., Domain decomposition techniques for efficient adaptive local grid refinement, (Chan, T. F.; Glowinski, R.; Periaux, J.; Widlund, O. B., ISC Report No. 1988-04. ISC Report No. 1988-04, Domain Decomposition Methods (1989), SIAM: SIAM Philadelphia, PA), 192-206
[64] R.E. Ewing, R.D. Lazarov and P.S. Vassilevski, Local refinement techniques for elliptic problems on cell-centered grids, I: Error analysis, Math Comp., submitted.; R.E. Ewing, R.D. Lazarov and P.S. Vassilevski, Local refinement techniques for elliptic problems on cell-centered grids, I: Error analysis, Math Comp., submitted. · Zbl 0724.65093
[65] R.E. Ewing, R.D. Lazarov, T.F. Russell and P.S. Vassilevski, Local refinement via domain decomposition techniques for mixed finite element methods with rectangular Raviart-Thomas elements, Proceedings of 1989 Conference on Domain Decomposition Methods (SIAM, Philadelphia, PA) to appear.; R.E. Ewing, R.D. Lazarov, T.F. Russell and P.S. Vassilevski, Local refinement via domain decomposition techniques for mixed finite element methods with rectangular Raviart-Thomas elements, Proceedings of 1989 Conference on Domain Decomposition Methods (SIAM, Philadelphia, PA) to appear. · Zbl 0705.65080
[66] R.E. Ewing, Application of domain decomposition techniques in large-scale fluid flow problems, Appl. Numer. Math., to appear.; R.E. Ewing, Application of domain decomposition techniques in large-scale fluid flow problems, Appl. Numer. Math., to appear. · Zbl 0741.76056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.