×

Image matching from handcrafted to deep features: a survey. (English) Zbl 1483.68439

Summary: As a fundamental and critical task in various visual applications, image matching can identify then correspond the same or similar structure/content from two or more images. Over the past decades, growing amount and diversity of methods have been proposed for image matching, particularly with the development of deep learning techniques over the recent years. However, it may leave several open questions about which method would be a suitable choice for specific applications with respect to different scenarios and task requirements and how to design better image matching methods with superior performance in accuracy, robustness and efficiency. This encourages us to conduct a comprehensive and systematic review and analysis for those classical and latest techniques. Following the feature-based image matching pipeline, we first introduce feature detection, description, and matching techniques from handcrafted methods to trainable ones and provide an analysis of the development of these methods in theory and practice. Secondly, we briefly introduce several typical image matching-based applications for a comprehensive understanding of the significance of image matching. In addition, we also provide a comprehensive and objective comparison of these classical and latest techniques through extensive experiments on representative datasets. Finally, we conclude with the current status of image matching technologies and deliver insightful discussions and prospects for future works. This survey can serve as a reference for (but not limited to) researchers and engineers in image matching and related fields.

MSC:

68T45 Machine vision and scene understanding
68T07 Artificial neural networks and deep learning
68U10 Computing methodologies for image processing
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Aanæs, H.; Dahl, AL; Pedersen, KS, Interesting interest points, International Journal of Computer Vision, 97, 1, 18-35 (2012)
[2] Aanæs, H.; Jensen, RR; Vogiatzis, G.; Tola, E.; Dahl, AB, Large-scale data for multiple-view stereopsis, International Journal of Computer Vision, 120, 2, 153-168 (2016)
[3] Abdel-Hakim, A. E., & Farag, A. A. (2006). Csift: A sift descriptor with color invariant characteristics. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1978-1983.
[4] Adamczewski, K., Suh, Y., & Mu Lee, K. (2015). Discrete tabu search for graph matching. In Proceedings of the IEEE international conference on computer vision, pp. 109-117.
[5] Adams, WP; Johnson, TA, Improved linear programming-based lower bounds for the quadratic assignment problem, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 16, 43-77 (1994) · Zbl 0819.90049
[6] Aflalo, Y.; Dubrovina, A.; Kimmel, R., Spectral generalized multi-dimensional scaling, International Journal of Computer Vision, 118, 3, 380-392 (2016) · Zbl 1380.68392
[7] Agrawal, M., Konolige, K., & Blas, M. R. (2008). Censure: Center surround extremas for realtime feature detection and matching. In Proceedings of the European conference on computer vision, pp. 102-115.
[8] Alahi, A., Ortiz, R., & Vandergheynst, P. (2012). Freak: Fast retina keypoint. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 510-517.
[9] Alcantarilla, P. F., Bartoli, A., & Davison, A. J. (2012) Kaze features. In Proceedings of the European conference on computer vision, pp. 214-227.
[10] Alcantarilla, PF; Solutions, T., Fast explicit diffusion for accelerated features in nonlinear scale spaces, IEEE Transactions on Pattern Analysis and Machine Intelligence, 34, 7, 1281-1298 (2011)
[11] Aldana-Iuit, J., Mishkin, D., Chum, O., & Matas, J. (2016). In the saddle: Chasing fast and repeatable features. In Proceedings of the international conference on pattern recognition, pp. 675-680.
[12] Almohamad, H.; Duffuaa, SO, A linear programming approach for the weighted graph matching problem, IEEE Transactions on Pattern Analysis and Machine Intelligence, 15, 5, 522-525 (1993)
[13] Amberg, B., Romdhani, S., & Vetter, T. (2007). Optimal step nonrigid ICP algorithms for surface registration. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1-8.
[14] Angeli, A., Filliat, D., Doncieux, S., & Meyer, J. A. (2008). A fast and incremental method for loop-closure detection using bags of visual words. In: IEEE transactions on robotics, pp. 1027-1037.
[15] Arandjelović, R., & Zisserman, A. (2012). Three things everyone should know to improve object retrieval. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2911-2918.
[16] Arar, M., Ginger, Y., Danon, D., Bermano, A. H., & Cohen-Or, D. (2020). Unsupervised multi-modal image registration via geometry preserving image-to-image translation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 13,410-13,419.
[17] Aubry, M., Schlickewei, U., & Cremers, D. (2011). The wave kernel signature: A quantum mechanical approach to shape analysis. In Proceedings of the IEEE international conference on computer vision workshops, pp. 1626-1633.
[18] Avrithis, Y.; Tolias, G., Hough pyramid matching: Speeded-up geometry re-ranking for large scale image retrieval, International Journal of Computer Vision, 107, 1, 1-19 (2014)
[19] Awrangjeb, M.; Lu, G., Robust image corner detection based on the chord-to-point distance accumulation technique, IEEE Transactions on Multimedia, 10, 6, 1059-1072 (2008)
[20] Awrangjeb, M.; Lu, G.; Fraser, CS, Performance comparisons of contour-based corner detectors, IEEE Transactions on Image Processing, 21, 9, 4167-4179 (2012) · Zbl 1373.94762
[21] Babai, L. (2018). Groups, graphs, algorithms: The graph isomorphism problem. In Proceedings of the international congress of mathematicians, pp. 3319-3336. · Zbl 1490.68116
[22] Balntas, V., Johns, E., Tang, L., & Mikolajczyk, K. (2016a). Pn-net: Conjoined triple deep network for learning local image descriptors. arXiv preprint arXiv:1601.05030.
[23] Balntas, V., Lenc, K., Vedaldi, A., & Mikolajczyk, K. (2017). Hpatches: A benchmark and evaluation of handcrafted and learned local descriptors. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5173-5182.
[24] Balntas, V., Riba, E., Ponsa, D., & Mikolajczyk, K. (2016b). Learning local feature descriptors with triplets and shallow convolutional neural networks. In Proceedings of the British machine vision conference, pp. 1-11.
[25] Barath, D., & Matas, J. (2018). Graph-cut ransac. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 6733-6741.
[26] Barath, D., Ivashechkin, M., & Matas, J. (2019a). Progressive napsac: Sampling from gradually growing neighborhoods. arXiv preprint arXiv:1906.02295.
[27] Barath, D., Matas, J., & Noskova, J. (2019b). Magsac: Marginalizing sample consensus. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 10,197-10,205.
[28] Barath, D., Noskova, J., Ivashechkin, M., & Matas, J. (2020). Magsac++, a fast, reliable and accurate robust estimator. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 1304-1312.
[29] Barroso-Laguna, A., Riba, E., Ponsa, D., & Mikolajczyk, K. (2019). Key.net: Keypoint detection by handcrafted and learned CNN filters. In Proceedings of the IEEE international conference on computer vision, pp. 5836-5844.
[30] Bay, H., Tuytelaars, T., & Van Gool, L. (2006). Surf: Speeded up robust features. In Proceedings of the European conference on computer vision, pp. 404-417.
[31] Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L., Speeded-up robust features (surf), Computer Vision and Image Understanding, 110, 3, 346-359 (2008)
[32] Bazin, J.C., Seo, Y., & Pollefeys, M. (2012). Globally optimal consensus set maximization through rotation search. In Proceedings of the Asian conference on computer vision, pp. 539-551.
[33] Bellavia, F.; Colombo, C., Is there anything new to say about sift matching?, International Journal of Computer Vision, 128, 3, 1847-1866 (2020)
[34] Belongie, S., Malik, J., & Puzicha, J. (2001). Shape context: A new descriptor for shape matching and object recognition. In Advances in neural information processing systems, pp. 831-837.
[35] Belongie, S.; Malik, J.; Puzicha, J., Shape matching and object recognition using shape contexts, IEEE Transactions on Pattern Analysis and Machine Intelligence, 4, 509-522 (2002)
[36] Bernard, F., Theobalt, C., & Moeller, M. (2018). Ds*: Tighter lifting-free convex relaxations for quadratic matching problems. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4310-4319.
[37] Bernard, F., Thunberg, J., Swoboda, P., & Theobalt, C. (2019). Hippi: Higher-order projected power iterations for scalable multi-matching. In Proceedings of the IEEE international conference on computer vision, pp. 10,284-10,293.
[38] Besl, P. J., & McKay, N. D. (1992). Method for registration of 3-d shapes. In Sensor fusion IV: Control paradigms and data structures, Vol. 1611, pp. 586-607.
[39] Bhattacharjee, D., & Roy, H. (2019). Pattern of local gravitational force (plgf): A novel local image descriptor. In IEEE transactions on pattern analysis and machine intelligence.
[40] Bhowmik, A., Gumhold, S., Rother, C., & Brachmann, E. (2020). Reinforced feature points: Optimizing feature detection and description for a high-level task. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 4948-4957.
[41] Bian, J., Lin, W. Y., Matsushita, Y., Yeung, S. K., Nguyen, T. D., & Cheng, M. M. (2017). Gms: Grid-based motion statistics for fast, ultra-robust feature correspondence. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4181-4190.
[42] Biasotti, S., Cerri, A., Bronstein, A., & Bronstein, M. (2016). Recent trends, applications, and perspectives in 3d shape similarity assessment. In Computer graphics forum, Vol. 35, Wiley Online Library, pp. 87-119.
[43] Blais, G.; Levine, MD, Registering multiview range data to create 3d computer objects, IEEE Transactions on Pattern Analysis and Machine Intelligence, 17, 8, 820-824 (1995)
[44] Bonny, M. Z., & Uddin, M. S. (2016). Feature-based image stitching algorithms. In Proceedings of the international workshop on computational intelligence, pp. 198-203.
[45] Boscaini, D., Masci, J., Melzi, S., Bronstein, M. M., Castellani, U., & Vandergheynst, P. (2015). Learning class-specific descriptors for deformable shapes using localized spectral convolutional networks. In Computer graphics forum, Vol. 34, Wiley Online Library, pp. 13-23.
[46] Boscaini, D., Masci, J., Rodolà, E., & Bronstein, M. (2016). Learning shape correspondence with anisotropic convolutional neural networks. In Advances in neural information processing systems, pp. 3189-3197.
[47] Brachmann, E., & Rother, C. (2019). Neural-guided RANSAC: Learning where to sample model hypotheses. In Proceedings of the IEEE international conference on computer vision, pp. 4322-4331.
[48] Brachmann, E., Krull, A., Nowozin, S., Shotton, J., Michel, F., Gumhold, S., & Rother, C. (2017). Dsac-differentiable RANSAC for camera localization. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 6684-6692.
[49] Bronstein, M. M., & Kokkinos, I. (2010). Scale-invariant heat kernel signatures for non-rigid shape recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1704-1711.
[50] Bronstein, AM; Bronstein, MM; Kimmel, R., Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching, Proceedings of the National Academy of Sciences, 103, 5, 1168-1172 (2006) · Zbl 1160.65306
[51] Brown, M.; Hua, G.; Winder, S., Discriminative learning of local image descriptors, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 1, 43-57 (2010)
[52] Brown, M.; Lowe, DG, Automatic panoramic image stitching using invariant features, International Journal of Computer Vision, 74, 1, 59-73 (2007)
[53] Caelli, T.; Kosinov, S., An eigenspace projection clustering method for inexact graph matching, IEEE Transactions on Pattern Analysis and Machine Intelligence, 26, 4, 515-519 (2004)
[54] Caetano, TS; McAuley, JJ; Cheng, L.; Le, QV; Smola, AJ, Learning graph matching, IEEE Transactions on Pattern Analysis and Machine Intelligence, 31, 6, 1048-1058 (2009)
[55] Cai, H.; Mikolajczyk, K.; Matas, J., Learning linear discriminant projections for dimensionality reduction of image descriptors, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 2, 338-352 (2010)
[56] Calonder, M., Lepetit, V., Strecha, C., & Fua, P. (2010). Brief: Binary robust independent elementary features. In Proceedings of the European conference on computer vision, pp. 778-792.
[57] Campbell, D., & Petersson, L. (2015). An adaptive data representation for robust point-set registration and merging. In Proceedings of the IEEE international conference on computer vision, pp. 4292-4300.
[58] Campbell, D., & Petersson, L. (2016). Gogma: Globally-optimal gaussian mixture alignment. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5685-5694.
[59] Canny, J. (1987). A computational approach to edge detection. In Readings in computer vision, Elsevier, pp. 184-203.
[60] Cao, SY; Shen, HL; Chen, SJ; Li, C., Boosting structure consistency for multispectral and multimodal image registration, IEEE Transactions on Image Processing, 29, 5147-5162 (2020)
[61] Castellani, U., Cristani, M., Fantoni, S., & Murino, V. (2008). Sparse points matching by combining 3d mesh saliency with statistical descriptors. In Computer graphics forum, Vol. 27, Wiley Online Library, pp. 643-652.
[62] Chang, J. R., & Chen, Y. S. (2018). Pyramid stereo matching network. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5410-5418.
[63] Chang, W., & Zwicker, M. (2009). Range scan registration using reduced deformable models. In Computer graphics forum, Vol. 28, Wiley Online Library, pp. 447-456.
[64] Chang, MC; Kimia, BB, Measuring 3d shape similarity by graph-based matching of the medial scaffolds, Computer Vision and Image Understanding, 115, 5, 707-720 (2011)
[65] Chen, Q., & Koltun, V. (2015). Robust nonrigid registration by convex optimization. In Proceedings of the IEEE international conference on computer vision, pp. 2039-2047.
[66] Chen, Y., Guibas, L., & Huang, Q. (2014). Near-optimal joint object matching via convex relaxation. In Proceedings of the international conference on machine learning, pp. 100-108.
[67] Chen, Y. C., Huang, P. H., Yu, L. Y., Huang, J. B., Yang, M. H., & Lin, Y. Y. (2018). Deep semantic matching with foreground detection and cycle-consistency. In Proceedings of the Asian conference on computer vision, pp. 347-362.
[68] Chen, J., Kellokumpu, V., Zhao, G., & Pietikäinen, M. (2013). Rlbp: Robust local binary pattern. In Proceedings of the British machine vision conference.
[69] Chen, J., Wang, L., Li, X., & Fang, Y. (2019). Arbicon-net: Arbitrary continuous geometric transformation networks for image registration. In Advances in neural information processing systems, pp. 3410-3420.
[70] Chen, HM; Arora, MK; Varshney, PK, Mutual information-based image registration for remote sensing data, International Journal of Remote Sensing, 24, 18, 3701-3706 (2003)
[71] Chen, H.; Bhanu, B., 3d free-form object recognition in range images using local surface patches, Pattern Recognition Letters, 28, 10, 1252-1262 (2007)
[72] Chen, QS; Defrise, M.; Deconinck, F., Symmetric phase-only matched filtering of Fourier-Mellin transforms for image registration and recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, 16, 12, 1156-1168 (1994)
[73] Chen, C.; Li, Y.; Liu, W.; Huang, J., Sirf: Simultaneous satellite image registration and fusion in a unified framework, IEEE Transactions on Image Processing, 24, 11, 4213-4224 (2015) · Zbl 1408.94084
[74] Chen, J.; Shan, S.; He, C.; Zhao, G.; Pietikainen, M.; Chen, X.; Gao, W., Wld: A robust local image descriptor, IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 9, 1705-1720 (2009)
[75] Chen, J.; Tian, J.; Lee, N.; Zheng, J.; Smith, RT; Laine, AF, A partial intensity invariant feature descriptor for multimodal retinal image registration, IEEE Transactions on Biomedical Engineering, 57, 7, 1707-1718 (2010)
[76] Chen, HM; Varshney, PK; Arora, MK, Performance of mutual information similarity measure for registration of multitemporal remote sensing images, IEEE Transactions on Geoscience and Remote Sensing, 41, 11, 2445-2454 (2003)
[77] Chertok, M.; Keller, Y., Efficient high order matching, IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 12, 2205-2215 (2010)
[78] Chetverikov, D.; Stepanov, D.; Krsek, P., Robust Euclidean alignment of 3d point sets: The trimmed iterative closest point algorithm, Image and Vision Computing, 23, 3, 299-309 (2005)
[79] Cho, M., & Lee, K. M. (2012). Progressive graph matching: Making a move of graphs via probabilistic voting. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 398-405.
[80] Cho, M., Lee, J., & Lee, K. M. (2010). Reweighted random walks for graph matching. In Proceedings of the European conference on computer vision, pp. 492-505.
[81] Chopra, S., Hadsell, R., LeCun, Y., et al. (2005). Learning a similarity metric discriminatively, with application to face verification. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 539-546.
[82] Choy, C. B., Gwak, J., Savarese, S., & Chandraker, M. (2016). Universal correspondence network. In Advances in neural information processing systems, pp. 2414-2422.
[83] Choy, C., Lee, J., Ranftl, R., Park, J., & Koltun, V. (2020). High-dimensional convolutional networks for geometric pattern recognition. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11,227-11,236.
[84] Chui, H.; Rangarajan, A., A new point matching algorithm for non-rigid registration, Computer Vision and Image Understanding, 89, 2-3, 114-141 (2003) · Zbl 1053.68123
[85] Chum, O., & Matas, J. (2005). Matching with prosac-progressive sample consensus. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 220-226.
[86] Chum, O., Matas, J., & Kittler, J. (2003). Locally optimized ransac. In Proceedings of the joint pattern recognition symposium, Springer, pp. 236-243.
[87] Churchill, D.; Vardy, A., An orientation invariant visual homing algorithm, Journal of Intelligent & Robotic Systems, 71, 1, 3-29 (2013)
[88] Cook, DJ; Holder, LB, Mining graph data (2006), New York: Wiley, New York · Zbl 1116.68028
[89] Cour, T., Srinivasan, P., & Shi, J. (2007). Balanced graph matching. In Advances in neural information processing systems, pp. 313-320.
[90] Cummins, M.; Newman, P., Fab-map: Probabilistic localization and mapping in the space of appearance, The International Journal of Robotics Research, 27, 6, 647-665 (2008)
[91] Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 886-893.
[92] Danelljan, M., Meneghetti, G., Shahbaz Khan, F., & Felsberg, M. (2016). A probabilistic framework for color-based point set registration. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1818-1826.
[93] Datar, M., Immorlica, N., Indyk, P., & Mirrokni, V. S. (2004). Locality-sensitive hashing scheme based on p-stable distributions. In Proceedings of the twentieth annual symposium on computational geometry, pp. 253-262. · Zbl 1373.68193
[94] Davison, AJ; Reid, ID; Molton, ND; Stasse, O., Monoslam: Real-time single camera slam, IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 1052-1067 (2007)
[95] Dawn, S., Saxena, V., & Sharma, B. (2010). Remote sensing image registration techniques: A survey. In Proceedings of the international conference on image and signal processing, pp. 103-112.
[96] de Vos, BD; Berendsen, FF; Viergever, MA; Sokooti, H.; Staring, M.; Isgum, I., A deep learning framework for unsupervised affine and deformable image registration, Medical Image Analysis, 52, 128-143 (2019)
[97] de Vos, B. D., Berendsen, F. F., Viergever, M. A., Staring, M., & Isgum, I. (2017). End-to-end unsupervised deformable image registration with a convolutional neural network. In Deep learning in medical image analysis and multimodal learning for clinical decision support, Springer, pp. 204-212.
[98] Deng, H., Birdal, T., & Ilic, S. (2018). Ppfnet: Global context aware local features for robust 3d point matching. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 195-205.
[99] Deng, H., Zhang, W., Mortensen, E., Dietterich, T., & Shapiro, L. (2007). Principal curvature-based region detector for object recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1-8.
[100] DeTone, D., Malisiewicz, T., & Rabinovich, A. (2016). Deep image homography estimation. arXiv preprint arXiv:1606.03798.
[101] DeTone, D., Malisiewicz, T., & Rabinovich, A. (2018). Superpoint: Self-supervised interest point detection and description. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp. 224-236.
[102] Dong, J., & Soatto, S. (2015). Domain-size pooling in local descriptors: Dsp-sift. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5097-5106.
[103] Dorai, C.; Jain, AK, Cosmos-a representation scheme for 3d free-form objects, IEEE Transactions on Pattern Analysis and Machine Intelligence, 19, 10, 1115-1130 (1997)
[104] Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., Van Der Smagt, P., Cremers, D., & Brox, T. (2015). Flownet: Learning optical flow with convolutional networks. In Proceedings of the IEEE international conference on computer vision, pp. 2758-2766.
[105] Duan, Y., Lu, J., Wang, Z., Feng, J., & Zhou, J. (2017). Learning deep binary descriptor with multi-quantization. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1183-1192.
[106] Duchenne, O.; Bach, F.; Kweon, IS; Ponce, J., A tensor-based algorithm for high-order graph matching, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 12, 2383-2395 (2011)
[107] Du, Q.; Fan, A.; Ma, Y.; Fan, F.; Huang, J.; Mei, X., Infrared and visible image registration based on scale-invariant piifd feature and locality preserving matching, IEEE Access, 6, 64107-64121 (2018)
[108] Dusmanu, M., Rocco, I., Pajdla, T., Pollefeys, M., Sivic, J., Torii, A., & Sattler, T. (2019). D2-net: A trainable cnn for joint description and detection of local features. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8092-8101.
[109] Dym, N., Maron, H., & Lipman, Y. (2017). Ds++: A flexible, scalable and provably tight relaxation for matching problems. arXiv preprint arXiv:1705.06148.
[110] Egozi, A.; Keller, Y.; Guterman, H., A probabilistic approach to spectral graph matching, IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 1, 18-27 (2012)
[111] Elad, A.; Kimmel, R., On bending invariant signatures for surfaces, IEEE Transactions on Pattern Analysis and Machine Intelligence, 25, 10, 1285-1295 (2003)
[112] Elbaz, G., Avraham, T., & Fischer, A. (2017). 3d point cloud registration for localization using a deep neural network auto-encoder. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4631-4640.
[113] Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., & Burgard, W. (2012). An evaluation of the rgb-d slam system. In Proceedings of the IEEE international conference on robotics and automation, pp. 1691-1696.
[114] Erin Liong, V., Lu, J., Wang, G., Moulin, P., & Zhou, J. (2015). Deep hashing for compact binary codes learning. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2475-2483.
[115] Erlik Nowruzi, F., Laganiere, R., & Japkowicz, N. (2017). Homography estimation from image pairs with hierarchical convolutional networks. In Proceedings of the IEEE international conference on computer vision, pp. 913-920.
[116] Evangelidis, GD; Horaud, R., Joint alignment of multiple point sets with batch and incremental expectation-maximization, IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 6, 1397-1410 (2018)
[117] Everingham, M.; Van Gool, L.; Williams, CK; Winn, J.; Zisserman, A., The pascal visual object classes (voc) challenge, International Journal of Computer Vision, 88, 2, 303-338 (2010)
[118] Fan, B.; Kong, Q.; Wang, X.; Wanga, Z.; Xiang, S.; Pan, C.; Fua, P., A performance evaluation of local features for image-based 3d reconstruction, IEEE Transactions on Image Processing, 28, 10, 4774-4789 (2019) · Zbl 07123014
[119] Fan, B.; Wu, F.; Hu, Z., Rotationally invariant descriptors using intensity order pooling, IEEE Transactions on Pattern Analysis and Machine Intelligence, 34, 10, 2031-2045 (2011)
[120] Ferrante, E.; Paragios, N., Slice-to-volume medical image registration: A survey, Medical Image Analysis, 39, 101-123 (2017)
[121] Ferraz, L.; Binefa, X., A sparse curvature-based detector of affine invariant blobs, Computer Vision and Image Understanding, 116, 4, 524-537 (2012)
[122] Fey, M., Lenssen, J. E., Morris, C., Masci, J., & Kriege, N. M. (2020). Deep graph matching consensus. In International conference on learning representations.
[123] Fischler, MA; Bolles, RC, Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography, Communications of the ACM, 24, 6, 381-395 (1981)
[124] Fitzgibbon, AW, Robust registration of 2d and 3d point sets, Image and Vision Computing, 21, 13-14, 1145-1153 (2003)
[125] Flint, A., Dick, A., & Van Den Hengel, A. (2007). Thrift: Local 3d structure recognition. In Proceedings of the biennial conference on digital image computing techniques and applications, pp. 182-188.
[126] Fogel, F., Jenatton, R., Bach, F., & d’Aspremont, A. (2013). Convex relaxations for permutation problems. In Advances in neural information processing systems, pp. 1016-1024.
[127] Foroosh, H.; Zerubia, JB; Berthod, M., Extension of phase correlation to subpixel registration, IEEE Transactions on Image Processing, 11, 3, 188-200 (2002)
[128] Forssén, P. E. (2007). Maximally stable colour regions for recognition and matching. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1-8.
[129] Fragoso, V., Sen, P., Rodriguez, S., & Turk, M. (2013). Evsac: accelerating hypotheses generation by modeling matching scores with extreme value theory. In Proceedings of the IEEE international conference on computer vision, pp. 2472-2479.
[130] Frome, A., Huber, D., Kolluri, R., Bülow, T., & Malik, J. (2004). Recognizing objects in range data using regional point descriptors. In Proceedings of the European conference on computer vision, pp. 224-237. · Zbl 1098.68766
[131] Gao, W., & Tedrake, R. (2019). Filterreg: Robust and efficient probabilistic point-set registration using Gaussian filter and twist parameterization. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 11,095-11,104.
[132] Gauglitz, S.; Höllerer, T.; Turk, M., Evaluation of interest point detectors and feature descriptors for visual tracking, International Journal of Computer Vision, 94, 3, 335-360 (2011) · Zbl 1235.68264
[133] Gay-Bellile, V.; Bartoli, A.; Sayd, P., Direct estimation of nonrigid registrations with image-based self-occlusion reasoning, IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 1, 87-104 (2008)
[134] Gelfand, N., Mitra, N. J., Guibas, L. J., & Pottmann, H. (2005). Robust global registration. In Symposium on geometry processing, Vol. 2, Vienna, Austria, p. 5.
[135] Georgakis, G., Karanam, S., Wu, Z., Ernst, J., & Kosecká, J. (2018). End-to-end learning of keypoint detector and descriptor for pose invariant 3d matching. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1965-1973.
[136] Ghosh, D.; Kaabouch, N., A survey on image mosaicing techniques, Journal of Visual Communication and Image Representation, 34, 1-11 (2016)
[137] Gil, A.; Mozos, OM; Ballesta, M.; Reinoso, O., A comparative evaluation of interest point detectors and local descriptors for visual slam, Machine Vision and Applications, 21, 6, 905-920 (2010)
[138] Gionis, A., Indyk, P., Motwani, R., et al. (1999). Similarity search in high dimensions via hashing. In Proceedings of the international conference on very large databases, pp. 518-529.
[139] Giraldo, L. G. S., Hasanbelliu, E., Rao, M., & Principe, J. C. (2017). Group-wise point-set registration based on rényi’s second order entropy. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2454-2462.
[140] Glaunes, J., Trouvé, A., & Younes, L. (2004). Diffeomorphic matching of distributions: A new approach for unlabelled point-sets and sub-manifolds matching. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 712-718.
[141] Gojcic, Z., Zhou, C., Wegner, J. D., Guibas, L. J., & Birdal, T. (2020). Learning multiview 3d point cloud registration. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 1759-1769.
[142] Gold, S.; Rangarajan, A., A graduated assignment algorithm for graph matching, IEEE Transactions on Pattern Analysis and Machine Intelligence, 18, 4, 377-388 (1996)
[143] Gold, S.; Rangarajan, A.; Lu, CP; Pappu, S.; Mjolsness, E., New algorithms for 2d and 3d point matching: Pose estimation and correspondence, Pattern Recognition, 31, 8, 1019-1031 (1998)
[144] Golyanik, V., Aziz Ali, S., & Stricker, D. (2016). Gravitational approach for point set registration. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5802-5810.
[145] Gong, Y., Kumar, S., Rowley, H. A., & Lazebnik, S. (2013). Learning binary codes for high-dimensional data using bilinear projections. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 484-491.
[146] Gong, Y.; Lazebnik, S.; Gordo, A.; Perronnin, F., Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval, IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 12, 2916-2929 (2012)
[147] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems, pp. 2672-2680.
[148] Granger, S., & Pennec, X. (2002). Multi-scale em-icp: A fast and robust approach for surface registration. In Proceedings of the European conference on computer vision, pp. 418-432. · Zbl 1039.68642
[149] Guo, Y.; Bennamoun, M.; Sohel, F.; Lu, M.; Wan, J.; Kwok, NM, A comprehensive performance evaluation of 3d local feature descriptors, International Journal of Computer Vision, 116, 1, 66-89 (2016)
[150] Guo, Y.; Sohel, F.; Bennamoun, M.; Lu, M.; Wan, J., Rotational projection statistics for 3d local surface description and object recognition, International Journal of Computer Vision, 105, 1, 63-86 (2013) · Zbl 1286.68387
[151] Guo, Y.; Sohel, F.; Bennamoun, M.; Wan, J.; Lu, M., A novel local surface feature for 3d object recognition under clutter and occlusion, Information Sciences, 293, 196-213 (2015)
[152] Guo, Z.; Zhang, L.; Zhang, D., A completed modeling of local binary pattern operator for texture classification, IEEE Transactions on Image Processing, 19, 6, 1657-1663 (2010) · Zbl 1371.94151
[153] Gupta, R., Patil, H., & Mittal, A. (2010). Robust order-based methods for feature description. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 334-341.
[154] Han, X., Leung, T., Jia, Y., Sukthankar, R., & Berg, A. C. (2015). Matchnet: Unifying feature and metric learning for patch-based matching. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3279-3286.
[155] Han, K., Rezende, R. S., Ham, B., Wong, K. Y. K., Cho, M., Schmid, C., & Ponce, J. (2017). Scnet: Learning semantic correspondence. In Proceedings of the IEEE international conference on computer vision, pp. 1831-1840.
[156] Harris, C. G., Stephens, M., et al. (1988). A combined corner and edge detector. In Proceedings of the Alvey vision conference, pp. 147-151.
[157] Hartmann, W., Havlena, M., & Schindler, K. (2014). Predicting matchability. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 9-16.
[158] Haskins, G.; Kruger, U.; Yan, P., Deep learning in medical image registration: A survey, Machine Vision and Applications, 31, 1, 8 (2020)
[159] Hayat, N.; Imran, M., Ghost-free multi exposure image fusion technique using dense sift descriptor and guided filter, Journal of Visual Communication and Image Representation, 62, 295-308 (2019)
[160] He, K., Lu, Y., & Sclaroff, S. (2018). Local descriptors optimized for average precision. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 596-605.
[161] Heikkilä, M.; Pietikäinen, M.; Schmid, C., Description of interest regions with local binary patterns, Pattern Recognition, 42, 3, 425-436 (2009) · Zbl 1181.68237
[162] Heinly, J., Dunn, E., & Frahm, J. M. (2012). Comparative evaluation of binary features. In Proceedings of the European conference on computer vision, pp. 759-773.
[163] Heinly, J., Schonberger, J. L., Dunn, E., & Frahm, J. M. (2015). Reconstructing the world* in six days*(as captured by the yahoo 100 million image dataset). In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3287-3295.
[164] Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski, G., Konolige, K., & Navab, N. (2012). Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes. InProceedings of the Asian conference on computer vision, pp. 548-562.
[165] Horaud, R.; Forbes, F.; Yguel, M.; Dewaele, G.; Zhang, J., Rigid and articulated point registration with expectation conditional maximization, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 3, 587-602 (2011)
[166] Hu, N., Huang, Q., Thibert, B., & Guibas, L. J. (2018). Distributable consistent multi-object matching. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2463-2471.
[167] Huang, Q. X., & Guibas, L. (2013). Consistent shape maps via semidefinite programming. In Computer graphics forum, Vol. 32, Wiley Online Library, pp. 177-186.
[168] Huang, X., Cheng, X., Geng, Q., Cao, B., Zhou, D., Wang, P., Lin, Y., & Yang, R. (2018). The apolloscape dataset for autonomous driving. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp. 954-960.
[169] Huang, D.; Shan, C.; Ardabilian, M.; Wang, Y.; Chen, L., Local binary patterns and its application to facial image analysis: a survey, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 41, 6, 765-781 (2011)
[170] Iglesias, J. P., Olsson, C., & Kahl, F. (2020). Global optimality for point set registration using semidefinite programming. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 8287-8295.
[171] Jaderberg, M., Simonyan, K., Zisserman, A., et al. (2015). Spatial transformer networks. In Advances in neural information processing systems, pp. 2017-2025.
[172] Jégou, H.; Douze, M.; Schmid, C., Improving bag-of-features for large scale image search, International Journal of Computer Vision, 87, 3, 316-336 (2010)
[173] Jiang, B., Tang, J., Ding, C., & Luo, B. (2017b). Binary constraint preserving graph matching. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4402-4409.
[174] Jiang, B., Tang, J., Ding, C., Gong, Y., & Luo, B. (2017a). Graph matching via multiplicative update algorithm. In Advances in neural information processing systems, pp. 3187-3195.
[175] Jiang, Z., Wang, T., & Yan, J. (2020b). Unifying offline and online multi-graph matching via finding shortest paths on supergraph. In IEEE transactions on pattern analysis and machine intelligence.
[176] Jiang, X.; Ma, J.; Jiang, J.; Guo, X., Robust feature matching using spatial clustering with heavy outliers, IEEE Transactions on Image Processing, 29, 736-746 (2020)
[177] Jiang, B.; Zhao, H.; Tang, J.; Luo, B., A sparse nonnegative matrix factorization technique for graph matching problems, Pattern Recognition, 47, 2, 736-747 (2014) · Zbl 1326.68293
[178] Jian, B.; Vemuri, BC, Robust point set registration using Gaussian mixture models, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 8, 1633-1645 (2011)
[179] Jin, Y., Mishkin, D., Mishchuk, A., Matas, J., Fua, P., Yi, K. M., & Trulls, E. (2020). Image matching across wide baselines: From paper to practice. arXiv preprint arXiv:2003.01587.
[180] Johnson, K., Cole-Rhodes, A., Zavorin, I., & Le Moigne, J. (2001). Mutual information as a similarity measure for remote sensing image registration. In Geo-spatial image and data exploitation II, pp. 51-61.
[181] Johnson, AE; Hebert, M., Using spin images for efficient object recognition in cluttered 3d scenes, IEEE Transactions on Pattern Analysis and Machine Intelligence, 21, 5, 433-449 (1999)
[182] Ke, Y., Sukthankar, R., et al. (2004). Pca-sift: A more distinctive representation for local image descriptors. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 506-513.
[183] Kedem, D., Tyree, S., Sha, F., Lanckriet, G. R., & Weinberger, K. Q. (2012). Non-linear metric learning. In Advances in neural information processing systems, pp. 2573-2581.
[184] Kezurer, I., Kovalsky, S. Z., Basri, R., & Lipman, Y. (2015). Tight relaxation of quadratic matching. In Computer graphics forum, Vol. 34, Wiley Online Library, pp. 115-128.
[185] Khoury, M., Zhou, Q. Y., & Koltun, V. (2017). Learning compact geometric features. In Proceedings of the IEEE international conference on computer vision, pp. 153-161.
[186] Kim, S., Lin, S., JEON, S. R., Min, D., & Sohn, K. (2018). Recurrent transformer networks for semantic correspondence. In Advances in neural information processing systems, pp. 6126-6136.
[187] Kim, V.G., Lipman, Y., & Funkhouser, T. (2011). Blended intrinsic maps. In ACM transactions on graphics, Vol. 30, ACM, p. 79.
[188] Kim, VG; Li, W.; Mitra, NJ; DiVerdi, S.; Funkhouser, TA, Exploring collections of 3d models using fuzzy correspondences, ACM Transactions on Graphics, 31, 4, 54-1 (2012)
[189] Kimmel, R.; Zhang, C.; Bronstein, A.; Bronstein, M., Are mser features really interesting?, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 11, 2316-2320 (2011)
[190] Kim, S.; Min, D.; Lin, S.; Sohn, K., Discrete-continuous transformation matching for dense semantic correspondence, IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 1, 59-73 (2020)
[191] Klein, S.; Staring, M.; Pluim, JP, Evaluation of optimization methods for nonrigid medical image registration using mutual information and b-splines, IEEE Transactions on Image Processing, 16, 12, 2879-2890 (2007)
[192] Kluger, F., Brachmann, E., Ackermann, H., Rother, C., Yang, M. Y., & Rosenhahn, B. (2020). Consac: Robust multi-model fitting by conditional sample consensus. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 4634-4643.
[193] Komorowski, J., Czarnota, K., Trzcinski, T., Dabala, L., & Lynen, S. (2018). Interest point detectors stability evaluation on apolloscape dataset. In Proceedings of the European conference on computer vision, pp. 727-739.
[194] Kovnatsky, A., Bronstein, M. M., Bresson, X., & Vandergheynst, P. (2015). Functional correspondence by matrix completion. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 905-914.
[195] Krebs, J., Mansi, T., Delingette, H., Zhang, L., Ghesu, F. C., Miao, S., Maier, A. K., Ayache, N., Liao, R., & Kamen, A. (2017). Robust non-rigid registration through agent-based action learning. In Proceedings of the international conference on medical image computing and computer-assisted intervention, pp. 344-352.
[196] Kulis, B., & Darrell, T. (2009). Learning to hash with binary reconstructive embeddings. In Advances in neural information processing systems, pp. 1042-1050.
[197] Kulis, B., & Grauman, K. (2009). Kernelized locality-sensitive hashing for scalable image search. In Proceedings of the IEEE international conference on computer vision, pp. 2130-2137.
[198] Kumar, B., Carneiro, G., Reid, I., et al. (2016). Learning local image descriptors with deep siamese and triplet convolutional networks by minimising global loss functions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5385-5394.
[199] Laskar, Z., & Kannala, J. (2018). Semi-supervised semantic matching. In Proceedings of the European conference on computer vision workshop, pp. 1-11.
[200] Lawin, F. J., Danelljan, M., Khan, F., Forssén, P. E., & Felsberg, M. (2018). Density adaptive point set registration. In Proceedings of the IEEE international conference on computer vision, pp. 3829-3837.
[201] Lawler, EL, The quadratic assignment problem, Management Science, 9, 4, 586-599 (1963) · Zbl 0995.90579
[202] Lazaridis, G.; Petrou, M., Image registration using the Walsh transform, IEEE Transactions on Image Processing, 15, 8, 2343-2357 (2006)
[203] Le Moigne, J.; Campbell, WJ; Cromp, RF, An automated parallel image registration technique based on the correlation of wavelet features, IEEE Transactions on Geoscience and Remote Sensing, 40, 8, 1849-1864 (2002)
[204] Lebeda, K., Matas, J., & Chum, O. (2012). Fixing the locally optimized ransac-full experimental evaluation. In Proceedings of the British machine vision conference, pp. 1-11.
[205] Lee, J., Cho, M., & Lee, K. M. (2010). A graph matching algorithm using data-driven markov chain monte carlo sampling. In Proceedings of the international conference on pattern recognition, pp. 2816-2819.
[206] Lee, J., Cho, M., & Lee, K. M. (2011). Hyper-graph matching via reweighted random walks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1633-1640.
[207] Lee, S., Lim, J., & Suh, I. H. (2020). Progressive feature matching: Incremental graph construction and optimization. In IEEE transactions on image processing.
[208] Lê-Huu, D. K., & Paragios, N. (2017). Alternating direction graph matching. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4914-4922.
[209] Lenc, K., & Vedaldi, A. (2014). Large scale evaluation of local image feature detectors on homography datasets. In Proceedings of the British machine vision conference.
[210] Lenc, K., & Vedaldi, A. (2016). Learning covariant feature detectors. In Proceedings of the European conference on computer vision, pp. 100-117.
[211] Leordeanu, M., & Hebert, M. (2005). A spectral technique for correspondence problems using pairwise constraints. In Proceedings of the IEEE international conference on computer vision, pp. 1482-1489.
[212] Leordeanu, M., Hebert, M., & Sukthankar, R. (2009). An integer projected fixed point method for graph matching and map inference. In Advances in neural information processing systems, pp. 1114-1122.
[213] Leordeanu, M.; Sukthankar, R.; Hebert, M., Unsupervised learning for graph matching, International Journal of Computer Vision, 96, 1, 28-45 (2012) · Zbl 1235.68274
[214] Leutenegger, S., Chli, M., & Siegwart, R. (2011). Brisk: Binary robust invariant scalable keypoints. In Proceedings of the IEEE international conference on computer vision, pp. 2548-2555.
[215] Levi, G., A note on the derivation of maximal common subgraphs of two directed or undirected graphs, Calcolo, 9, 4, 341 (1973) · Zbl 0261.05132
[216] Li, H., & Hartley, R. (2007). The 3d-3d registration problem revisited. In Proceedings of the IEEE international conference on computer vision, pp. 1-8.
[217] Li, X., Han, K., Li, S., & Prisacariu, V. A. (2020). Dual-resolution correspondence networks. arXiv preprint arXiv:2006.08844.
[218] Li, H., Shen, T., & Huang, X. (2009). Global optimization for alignment of generalized shapes. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 856-863.
[219] Li, H., Sumner, R. W., & Pauly, M. (2008). Global correspondence optimization for non-rigid registration of depth scans. In Computer graphics forum, Vol. 27, Wiley Online Library, pp. 1421-1430.
[220] Lian, W.; Zhang, L.; Yang, MH, An efficient globally optimal algorithm for asymmetric point matching, IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 7, 1281-1293 (2017)
[221] Liao, R., Miao, S., de Tournemire, P., Grbic, S., Kamen, A., Mansi, T., & Comaniciu, D. (2017). An artificial agent for robust image registration. In Proceedings of the thirty-first AAAI conference on artificial intelligence, pp. 4168-4175.
[222] Liao, Q., Sun, D., & Andreasson, H. (2020). Point set registration for 3d range scans using fuzzy cluster-based metric and efficient global optimization. In IEEE transactions on pattern analysis and machine intelligence.
[223] Li, X.; Hu, Z., Rejecting mismatches by correspondence function, International Journal of Computer Vision, 89, 1, 1-17 (2010)
[224] Li, Z.; Mahapatra, D.; Tielbeek, JA; Stoker, J.; van Vliet, LJ; Vos, FM, Image registration based on autocorrelation of local structure, IEEE Transactions on Image Processing, 35, 1, 63-75 (2015)
[225] Lin, W. Y. D., Cheng, M. M., Lu, J., Yang, H., Do, M. N., & Torr, P. (2014). Bilateral functions for global motion modeling. In Proceedings of the European conference on computer vision, pp. 341-356.
[226] Lin, W. Y., Liu, S., Jiang, N., Do, M. N., Tan, P., & Lu, J. (2016b). Repmatch: Robust feature matching and pose for reconstructing modern cities. In Proceedings of the European conference on computer vision, pp. 562-579.
[227] Lin, W. Y., Liu, S., Matsushita, Y., Ng, T. T., & Cheong, L. F. (2011). Smoothly varying affine stitching. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 345-352.
[228] Lin, K., Lu, J., Chen, C. S., & Zhou, J. (2016a). Learning compact binary descriptors with unsupervised deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1183-1192.
[229] Lindeberg, T., Feature detection with automatic scale selection, International Journal of Computer Vision, 30, 2, 79-116 (1998)
[230] Lin, WY; Wang, F.; Cheng, MM; Yeung, SK; Torr, PH; Do, MN; Lu, J., Code: Coherence based decision boundaries for feature correspondence, IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 1, 34-47 (2017)
[231] Lipman, Y.; Funkhouser, T., Möbius voting for surface correspondence, ACM Transactions on Graphics, 28, 3, 72 (2009)
[232] Lipman, Y.; Yagev, S.; Poranne, R.; Jacobs, DW; Basri, R., Feature matching with bounded distortion, ACM Transactions on Graphics, 33, 3, 26 (2014) · Zbl 1322.68244
[233] Litany, O., Remez, T., Rodolà, E., Bronstein, A., & Bronstein, M. (2017). Deep functional maps: Structured prediction for dense shape correspondence. In Proceedings of the IEEE international conference on computer vision, pp. 5659-5667.
[234] Litjens, G.; Kooi, T.; Bejnordi, BE; Setio, AAA; Ciompi, F.; Ghafoorian, M.; Van Der Laak, JA; Van Ginneken, B.; Sánchez, CI, A survey on deep learning in medical image analysis, Medical Image Analysis, 42, 60-88 (2017)
[235] Litman, R.; Bronstein, AM, Learning spectral descriptors for deformable shape correspondence, IEEE Transactions on Pattern Analysis and Machine Intelligence, 36, 1, 171-180 (2014)
[236] Liu, H., & Yan, S. (2010). Common visual pattern discovery via spatially coherent correspondences. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1609-1616.
[237] Liu, Y., & Zhang, H. (2012). Indexing visual features: Real-time loop closure detection using a tree structure. In Proceedings of the IEEE international conference on robotics and automation, pp. 3613-3618.
[238] Liu, Y., Feng, R., & Zhang, H. (2015a). Keypoint matching by outlier pruning with consensus constraint. In Proceedings of the IEEE international conference on robotics and automation, pp. 5481-5486.
[239] Liu, W., Wang, J., Ji, R., Jiang, Y. G., & Chang, S. F. (2012a). Supervised hashing with kernels. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2074-2081.
[240] Liu, Y., Wang, C., Song, Z., & Wang, M. (2018b). Efficient global point cloud registration by matching rotation invariant features through translation search. In Proceedings of the European conference on computer vision, pp. 448-463.
[241] Liu, R., Yang, C., Sun, W., Wang, X., & Li, H. (2020). Stereogan: Bridging synthetic-to-real domain gap by joint optimization of domain translation and stereo matching. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 12,757-12,766.
[242] Liu, X.; Ai, Y.; Zhang, J.; Wang, Z., A novel affine and contrast invariant descriptor for infrared and visible image registration, Remote Sensing, 10, 4, 658 (2018)
[243] Liu, Y.; Chen, X.; Peng, H.; Wang, Z., Multi-focus image fusion with a deep convolutional neural network, Information Fusion, 36, 191-207 (2017)
[244] Liu, H.; Guo, B.; Feng, Z., Pseudo-log-polar Fourier transform for image registration, IEEE Signal Processing Letters, 13, 1, 17-20 (2005)
[245] Liu, Y.; Liu, S.; Wang, Z., Multi-focus image fusion with dense sift, Information Fusion, 23, 139-155 (2015)
[246] Liu, M.; Pradalier, C.; Siegwart, R., Visual homing from scale with an uncalibrated omnidirectional camera, IEEE Transactions on Robotics, 29, 6, 1353-1365 (2013)
[247] Liu, ZY; Qiao, H., GNCCP-graduated nonconvexityand concavity procedure, IEEE Transactions on Pattern Analysis and Machine Intelligence, 36, 6, 1258-1267 (2014)
[248] Liu, ZY; Qiao, H.; Xu, L., An extended path following algorithm for graph-matching problem, IEEE Transactions on Pattern Analysis and Machine Intelligence, 34, 7, 1451-1456 (2012)
[249] Li, Y.; Wang, S.; Tian, Q.; Ding, X., A survey of recent advances in visual feature detection, Neurocomputing, 149, 736-751 (2015)
[250] Loeckx, D.; Slagmolen, P.; Maes, F.; Vandermeulen, D.; Suetens, P., Nonrigid image registration using conditional mutual information, IEEE Transactions on Image, 29, 1, 19-29 (2009)
[251] Loiola, EM; de Abreu, NMM; Boaventura-Netto, PO; Hahn, P.; Querido, T., A survey for the quadratic assignment problem, European Journal of Operational Research, 176, 2, 657-690 (2007) · Zbl 1103.90058
[252] Lowe, D.G., et al. (1999). Object recognition from local scale-invariant features. In Proceedings of the IEEE international conference on computer vision, pp. 1150-1157.
[253] Lowe, DG, Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision, 60, 2, 91-110 (2004)
[254] Lowry, S., & Andreasson, H. (2018). Logos: Local geometric support for high-outlier spatial verification. In Proceedings of the IEEE international conference on robotics and automation, pp. 7262-7269.
[255] Luo, W., Schwing, A. G., & Urtasun, R. (2016). Efficient deep learning for stereo matching. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5695-5703.
[256] Luo, Z., Shen, T., Zhou, L., Zhang, J., Yao, Y., Li, S., Fang, T., & Quan, L. (2019). Contextdesc: Local descriptor augmentation with cross-modality context. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2527-2536.
[257] Luo, Z., Zhou, L., Bai, X., Chen, H., Zhang, J., Yao, Y., Li, S., Fang, T., & Quan, L. (2020). Aslfeat: Learning local features of accurate shape and localization. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 6589-6598.
[258] Ma, J., Zhao, J., Jiang, J., Zhou, H., Zhou, Y., Wang, Z., & Guo, X. (2018b). Visual homing via guided locality preserving matching. In Proceedings of the IEEE international conference on robotics and automation, pp. 7254-7261.
[259] Ma, J., Zhao, J., Tian, J., Tu, Z., & Yuille, A. L. (2013b). Robust estimation of nonrigid transformation for point set registration. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2147-2154.
[260] Ma, J.; Chen, C.; Li, C.; Huang, J., Infrared and visible image fusion via gradient transfer and total variation minimization, Information Fusion, 31, 100-109 (2016)
[261] Maes, F.; Collignon, A.; Vandermeulen, D.; Marchal, G.; Suetens, P., Multimodality image registration by maximization of mutual information, IEEE Transactions on Image, 16, 2, 187-198 (1997)
[262] Mainali, P.; Lafruit, G.; Yang, Q.; Geelen, B.; Van Gool, L.; Lauwereins, R., Sifer: Scale-invariant feature detector with error resilience, International Journal of Computer Vision, 104, 2, 172-197 (2013) · Zbl 1286.68476
[263] Mair, E., Hager, G. D., Burschka, D., Suppa, M., & Hirzinger, G. (2010). Adaptive and generic corner detection based on the accelerated segment test. In Proceedings of the European conference on computer vision, pp. 183-196.
[264] Maiseli, B.; Gu, Y.; Gao, H., Recent developments and trends in point set registration methods, Journal of Visual Communication and Image Representation, 46, 95-106 (2017)
[265] Ma, J.; Jiang, X.; Jiang, J.; Zhao, J.; Guo, X., LMR: Learning a two-class classifier for mismatch removal, IEEE Transactions on Image Processing, 28, 8, 4045-4059 (2019) · Zbl 07122961
[266] Ma, J.; Jiang, J.; Liu, C.; Li, Y., Feature guided Gaussian mixture model with semi-supervised em and local geometric constraint for retinal image registration, Information Sciences, 417, 128-142 (2017) · Zbl 1444.92054
[267] Ma, J.; Jiang, J.; Zhou, H.; Zhao, J.; Guo, X., Guided locality preserving feature matching for remote sensing image registration, IEEE Transactions on Geoscience and Remote Sensing, 56, 8, 4435-4447 (2018)
[268] Ma, J.; Liang, P.; Yu, W.; Chen, C.; Guo, X.; Wu, J., Infrared and visible image fusion via detail preserving adversarial learning, Information Fusion, 54, 85-98 (2020)
[269] Ma, J.; Qiu, W.; Zhao, J.; Ma, Y.; Yuille, AL; Tu, Z., Robust \(l_2e\) estimation of transformation for non-rigid registration, IEEE Transactions on Signal Processing, 63, 5, 1115-1129 (2015) · Zbl 1394.94358
[270] Marimon, D., Bonnin, A., Adamek, T., & Gimeno, R. (2010). Darts: Efficient scale-space extraction of daisy keypoints. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2416-2423.
[271] Maron, H., & Lipman, Y. (2018). (probably) concave graph matching. In Advances in Neural information processing systems, pp. 406-416.
[272] Maron, H.; Dym, N.; Kezurer, I.; Kovalsky, S.; Lipman, Y., Point registration via efficient convex relaxation, ACM Transactions on Graphics, 35, 4, 73 (2016)
[273] Masci, J., Boscaini, D., Bronstein, M., & Vandergheynst, P. (2015). Geodesic convolutional neural networks on Riemannian manifolds. In Proceedings of the IEEE international conference on computer vision workshops, pp. 37-45.
[274] Masood, A.; Sarfraz, M., Corner detection by sliding rectangles along planar curves, Computers & Graphics, 31, 3, 440-448 (2007)
[275] Matas, J.; Chum, O.; Urban, M.; Pajdla, T., Robust wide-baseline stereo from maximally stable extremal regions, Image and Vision Computing, 22, 10, 761-767 (2004)
[276] Ma, W.; Wen, Z.; Wu, Y.; Jiao, L.; Gong, M.; Zheng, Y., Remote sensing image registration with modified sift and enhanced feature matching, IEEE Geoscience and Remote Sensing Letters, 14, 1, 3-7 (2017)
[277] Ma, J.; Wu, J.; Zhao, J.; Jiang, J.; Zhou, H.; Sheng, QZ, Nonrigid point set registration with robust transformation learning under manifold regularization, IEEE Transactions on Neural Networks and Learning Systems, 30, 12, 3584-3597 (2019)
[278] Mayer, N., Ilg, E., Hausser, P., Fischer, P., Cremers, D., Dosovitskiy, A., & Brox, T. (2016). A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4040-4048.
[279] Ma, J.; Yu, W.; Liang, P.; Li, C.; Jiang, J., Fusiongan: A generative adversarial network for infrared and visible image fusion, Information Fusion, 48, 11-26 (2019)
[280] Ma, J.; Zhao, J.; Jiang, J.; Zhou, H.; Guo, X., Locality preserving matching, International Journal of Computer Vision, 127, 5, 512-531 (2019)
[281] Ma, J.; Zhao, J.; Ma, Y.; Tian, J., Non-rigid visible and infrared face registration via regularized gaussian fields criterion, Pattern Recognition, 48, 3, 772-784 (2015)
[282] Ma, J.; Zhao, J.; Tian, J.; Bai, X.; Tu, Z., Regularized vector field learning with sparse approximation for mismatch removal, Pattern Recognition, 46, 12, 3519-3532 (2013) · Zbl 1326.68232
[283] Ma, J.; Zhao, J.; Tian, J.; Yuille, AL; Tu, Z., Robust point matching via vector field consensus, IEEE Transactions on Image Processing, 23, 4, 1706-1721 (2014) · Zbl 1374.94246
[284] Ma, J.; Zhao, J.; Yuille, AL, Non-rigid point set registration by preserving global and local structures, IEEE Transactions on Image Processing, 25, 1, 53-64 (2016) · Zbl 1408.94463
[285] Ma, J.; Zhou, H.; Zhao, J.; Gao, Y.; Jiang, J.; Tian, J., Robust feature matching for remote sensing image registration via locally linear transforming, IEEE Transactions on Geoscience and Remote Sensing, 53, 12, 6469-6481 (2015)
[286] Mian, A.; Bennamoun, M.; Owens, R., On the repeatability and quality of keypoints for local feature-based 3d object retrieval from cluttered scenes, International Journal of Computer Vision, 89, 2-3, 348-361 (2010)
[287] Miao, S., Piat, S., Fischer, P., Tuysuzoglu, A., Mewes, P., Mansi, T., & Liao, R. (2018). Dilated fcn for multi-agent 2d/3d medical image registration. In Proceedings of the thirty-second AAAI conference on artificial intelligence, pp. 4694-4701.
[288] Mikolajczyk, K., & Schmid, C. (2001). Indexing based on scale invariant interest points. In Proceedings of the IEEE international conference on computer vision, pp. 525-531.
[289] Mikolajczyk, K.; Schmid, C., Scale & affine invariant interest point detectors, International Journal of Computer Vision, 60, 1, 63-86 (2004)
[290] Mikolajczyk, K.; Schmid, C., A performance evaluation of local descriptors, IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 10, 1615-1630 (2005)
[291] Mikolajczyk, K.; Tuytelaars, T.; Schmid, C.; Zisserman, A.; Matas, J.; Schaffalitzky, F.; Kadir, T.; Van Gool, L., A comparison of affine region detectors, International Journal of Computer Vision, 65, 1-2, 43-72 (2005)
[292] Mishchuk, A., Mishkin, D., Radenovic, F., & Matas, J. (2017). Working hard to know your neighbor’s margins: Local descriptor learning loss. In Advances in neural information processing systems, pp. 4826-4837.
[293] Mishkin, D., Radenovic, F., & Matas, J. (2017). Learning discriminative affine regions via discriminability. arXiv preprint arXiv:1711.06704.
[294] Mishkin, D., Radenovic, F., & Matas, J. (2018). Repeatability is not enough: Learning affine regions via discriminability. In Proceedings of the European conference on computer vision, pp. 284-300.
[295] Mitra, R., Doiphode, N., Gautam, U., Narayan, S., Ahmed, S., Chandran, S., & Jain, A. (2018). A large dataset for improving patch matching. arXiv preprint arXiv:1801.01466.
[296] Mok, T. C., & Chung, A. (2020). Fast symmetric diffeomorphic image registration with convolutional neural networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 4644-4653.
[297] Mokhtarian, F.; Suomela, R., Robust image corner detection through curvature scale space, IEEE Transactions on Pattern Analysis and Machine Intelligence, 20, 12, 1376-1381 (1998)
[298] Möller, R.; Krzykawski, M.; Gerstmayr, L., Three 2d-warping schemes for visual robot navigation, Autonomous Robots, 29, 3-4, 253-291 (2010)
[299] Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., & Bronstein, M. M. (2017). Geometric deep learning on graphs and manifolds using mixture model CNNs. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5115-5124.
[300] Moo Yi, K., Trulls, E., Ono, Y., Lepetit, V., Salzmann, M., & Fua, P. (2018). Learning to find good correspondences. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2666-2674.
[301] Moo Yi, K., Verdie, Y., Fua, P., & Lepetit, V. (2016). Learning to assign orientations to feature points. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 107-116.
[302] Moravec, H. P. (1977). Techniques towards automatic visual obstacle avoidance.
[303] Morel, JM; Yu, G., Asift: A new framework for fully affine invariant image comparison, SIAM Journal on Imaging Sciences, 2, 2, 438-469 (2009) · Zbl 1181.68252
[304] Mukherjee, D.; Wu, QJ; Wang, G., A comparative experimental study of image feature detectors and descriptors, Machine Vision and Applications, 26, 4, 443-466 (2015)
[305] Mur-Artal, R.; Montiel, JMM; Tardos, JD, ORB-SLAM: A versatile and accurate monocular slam system, IEEE Transactions on Robotics, 31, 5, 1147-1163 (2015)
[306] Mustafa, A.; Kim, H.; Hilton, A., Msfd: Multi-scale segmentation-based feature detection for wide-baseline scene reconstruction, IEEE Transactions on Image Processing, 28, 3, 1118-1132 (2018)
[307] Myronenko, A.; Song, X., Point set registration: Coherent point drift, IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 12, 2262-2275 (2010)
[308] Nasuto, D., & Craddock, J. B. R. (2002). Napsac: High noise, high dimensional robust estimation-it’s in the bag. In Proceedings of the British machine vision conference, pp. 458-467.
[309] Ni, K., Jin, H., & Dellaert, F. (2009). Groupsac: Efficient consensus in the presence of groupings. In Proceedings of the IEEE international conference on computer vision, pp. 2193-2200.
[310] Norouzi, M., & Blei, D. M. (2011). Minimal loss hashing for compact binary codes. In Proceedings of the international conference on machine learning, pp. 353-360.
[311] Nüchter, A.; Lingemann, K.; Hertzberg, J.; Surmann, H., 6d SLAM-3d mapping outdoor environments, Journal of Field Robotics, 24, 8-9, 699-722 (2007) · Zbl 1243.68294
[312] Ojala, T.; Pietikäinen, M.; Mäenpää, T., Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 7, 971-987 (2002) · Zbl 0977.68853
[313] Ono, Y., Trulls, E., Fua, P., & Yi, K. M. (2018). LF-NET: Learning local features from images. In Advances in neural information processing systems, pp. 6234-6244.
[314] Ovsjanikov, M.; Ben-Chen, M.; Solomon, J.; Butscher, A.; Guibas, L., Functional maps: A flexible representation of maps between shapes, ACM Transactions on Graphics, 31, 4, 30 (2012)
[315] Pachauri, D., Kondor, R., & Singh, V. (2013). Solving the multi-way matching problem by permutation synchronization. In Advances in neural information processing systems, pp. 1860-1868.
[316] Pais, G. D., Ramalingam, S., Govindu, V. M., Nascimento, J. C., Chellappa, R., & Miraldo, P. (2020). 3dregnet: A deep neural network for 3d point registration. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 7193-7203.
[317] Pan, W. H., Wei, S. D., & Lai, S. H. (2008). Efficient NCC-based image matching in Walsh-Hadamard domain. In Proceedings of the European conference on computer vision, pp. 468-480.
[318] Pang, J., Sun, W., Ren, J. S., Yang, C., & Yan, Q. (2017). Cascade residual learning: A two-stage convolutional neural network for stereo matching. In Proceedings of the IEEE international conference on computer vision, pp. 887-895.
[319] Papazov, C.; Burschka, D., Stochastic global optimization for robust point set registration, Computer Vision and Image Understanding, 115, 12, 1598-1609 (2011)
[320] Park, J., Zhou, Q. Y., & Koltun, V. (2017). Colored point cloud registration revisited. In Proceedings of the IEEE international conference on computer vision, pp. 143-152.
[321] Parra Bustos, A., Chin, T. J., & Suter, D. (2014). Fast rotation search with stereographic projections for 3d registration. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3930-3937.
[322] Paul, S.; Pati, UC, Remote sensing optical image registration using modified uniform robust sift, IEEE Geoscience and Remote Sensing Letters, 13, 9, 1300-1304 (2016)
[323] Perona, P.; Malik, J., Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 7, 629-639 (1990)
[324] Philbin, J., Chum, O., Isard, M., Sivic, J., & Zisserman, A. (2007). Object retrieval with large vocabularies and fast spatial matching. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1-8.
[325] Piasco, N.; Sidibé, D.; Demonceaux, C.; Gouet-Brunet, V., A survey on visual-based localization: On the benefit of heterogeneous data, Pattern Recognition, 74, 90-109 (2018)
[326] Pilet, J.; Lepetit, V.; Fua, P., Fast non-rigid surface detection, registration and realistic augmentation, International Journal of Computer Vision, 76, 2, 109-122 (2008)
[327] Pinheiro, AM; Ghanbari, M., Piecewise approximation of contours through scale-space selection of dominant points, IEEE Transactions on Image Processing, 19, 6, 1442-1450 (2010) · Zbl 1371.94296
[328] Plötz, T., & Roth, S. (2018). Neural nearest neighbors networks. In Advances in Neural information processing systems, pp. 1087-1098.
[329] Poggi, M., Pallotti, D., Tosi, F., & Mattoccia, S. (2019). Guided stereo matching. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 979-988.
[330] Pohl, C.; Van Genderen, JL, Review article multisensor image fusion in remote sensing: concepts, methods and applications, International Journal of Remote Sensing, 19, 5, 823-854 (1998)
[331] Pokrass, J., Bronstein, A. M., Bronstein, M. M., Sprechmann, P., & Sapiro, G. (2013). Sparse modeling of intrinsic correspondences. In Computer graphics forum, Vol. 32, Wiley Online Library, pp. 459-468. · Zbl 1380.68404
[332] Pomerleau, F.; Colas, F.; Siegwart, R.; Magnenat, S., Comparing ICP variants on real-world data sets, Autonomous Robots, 34, 3, 133-148 (2013)
[333] Poursaeed, O., Yang, G., Prakash, A., Fang, Q., Jiang, H., Hariharan, B., & Belongie, S. (2018). Deep fundamental matrix estimation without correspondences. In Proceedings of the European conference on computer vision workshop, pp. 1-13.
[334] Qi, C.R., Su, H., Mo, K., & Guibas, L. J. (2017a). Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 652-660.
[335] Qi, C. R., Yi, L., Su, H., & Guibas, L. J. (2017b). Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In Advances in neural information processing systems, pp. 5099-5108.
[336] Quinlan, JR, Induction of decision trees, Machine Learning, 1, 1, 81-106 (1986)
[337] Raguram, R.; Chum, O.; Pollefeys, M.; Matas, J.; Frahm, JM, USAC: A universal framework for random sample consensus, IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 8, 2022-2038 (2012)
[338] Ramer, U., An iterative procedure for the polygonal approximation of plane curves, Computer Graphics and Image Processing, 1, 3, 244-256 (1972)
[339] Ramisa, A.; Goldhoorn, A.; Aldavert, D.; Toledo, R.; de Mantaras, RL, Combining invariant features and the ALV homing method for autonomous robot navigation based on panoramas, Journal of Intelligent & Robotic Systems, 64, 3-4, 625-649 (2011)
[340] Ranftl, R., & Koltun, V. (2018). Deep fundamental matrix estimation. In Proceedings of the European conference on computer vision, pp. 284-299.
[341] Reddy, BS; Chatterji, BN, An FFT-based technique for translation, rotation, and scale-invariant image registration, IEEE Transactions on Image Processing, 5, 8, 1266-1271 (1996)
[342] Revaud, J., Weinzaepfel, P., De Souza, C., Pion, N., Csurka, G., Cabon, Y., & Humenberger, M. (2019). R2d2: Repeatable and reliable detector and descriptor. arXiv preprint arXiv:1906.06195.
[343] Revaud, J.; Weinzaepfel, P.; Harchaoui, Z.; Schmid, C., Deepmatching: Hierarchical deformable dense matching, International Journal of Computer Vision, 120, 3, 300-323 (2016)
[344] Richardson, A., & Olson, E. (2013). Learning convolutional filters for interest point detection. In Proceedings of the IEEE international conference on robotics and automation, pp. 631-637.
[345] Robertson, C.; Fisher, RB, Parallel evolutionary registration of range data, Computer Vision and Image Understanding, 87, 1-3, 39-50 (2002) · Zbl 1031.68628
[346] Rocco, I., Arandjelovic, R., & Sivic, J. (2017). Convolutional neural network architecture for geometric matching. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 6148-6157.
[347] Rocco, I., Cimpoi, M., Arandjelović, R., Torii, A., Pajdla, T., & Sivic, J. (2018). Neighbourhood consensus networks. In Advances in neural information processing systems, pp. 1651-1662.
[348] Rodola, E., Bronstein, A. M., Albarelli, A., Bergamasco, F., & Torsello, A. (2012). A game-theoretic approach to deformable shape matching. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 182-189.
[349] Rodolà, E., Cosmo, L., Bronstein, M. M., Torsello, A., & Cremers, D. (2017). Partial functional correspondence. In Computer graphics forum, Vol. 36, Wiley Online Library, pp. 222-236.
[350] Rodolà, E., Rota Bulo, S., Windheuser, T., Vestner, M., & Cremers, D. (2014). Dense non-rigid shape correspondence using random forests. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4177-4184.
[351] Rodola, E., Torsello, A., Harada, T., Kuniyoshi, Y., & Cremers, D. (2013). Elastic net constraints for shape matching. In Proceedings of the IEEE international conference on computer vision, pp. 1169-1176.
[352] Rosenfeld, A.; Weszka, JS, An improved method of angle detection on digital curves, IEEE Transactions on Computers, 100, 9, 940-941 (1975)
[353] Rosten, E., & Drummond, T. (2006). Machine learning for high-speed corner detection. In Proceedings of the European conference on computer vision, pp. 430-443.
[354] Rosten, E.; Porter, R.; Drummond, T., Faster and better: A machine learning approach to corner detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 1, 105-119 (2010)
[355] Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. R. (2011). Orb: An efficient alternative to sift or surf. In Proceedings of the IEEE international conference on computer vision, pp. 2564-2571.
[356] Rustamov, R. M. (2007). Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In Proceedings of the Eurographics symposium on geometry processing, pp. 225-233.
[357] Rusu, R. B., Blodow, N., & Beetz, M. (2009). Fast point feature histograms (fpfh) for 3d registration. In Proceedings of the IEEE international conference on robotics and automation, pp. 3212-3217.
[358] Rusu, R. B., Blodow, N., Marton, Z. C., & Beetz, M. (2008). Aligning point cloud views using persistent feature histograms. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, pp. 3384-3391.
[359] Sahillioglu, Y., & Yemez, Y. (2011). Coarse-to-fine combinatorial matching for dense isometric shape correspondence. In Computer graphics forum, Vol. 30, Wiley Online Library, pp. 1461-1470.
[360] Salakhutdinov, R.; Hinton, G., Semantic hashing, International Journal of Approximate Reasoning, 50, 7, 969-978 (2009)
[361] Salti, S., Lanza, A., & Di Stefano, L. (2013). Keypoints from symmetries by wave propagation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2898-2905.
[362] Salti, S., Tombari, F., Spezialetti, R., & Di Stefano, L. (2015). Learning a descriptor-specific 3d keypoint detector. In Proceedings of the IEEE international conference on computer vision, pp. 2318-2326.
[363] Sandhu, R.; Dambreville, S.; Tannenbaum, A., Point set registration via particle filtering and stochastic dynamics, IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 8, 1459-1473 (2010)
[364] Sarlin, P.E., DeTone, D., Malisiewicz, T., & Rabinovich, A. (2020). Superglue: Learning feature matching with graph neural networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 4938-4947.
[365] Savinov, N., Seki, A., Ladicky, L., Sattler, T., & Pollefeys, M. (2017). Quad-networks: Unsupervised learning to rank for interest point detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1822-1830.
[366] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2009). The graph neural network model. In TNN.
[367] Schellewald, C., & Schnörr, C. (2005). Probabilistic subgraph matching based on convex relaxation. In Proceedings of the international workshop on energy minimization methods in computer vision and pattern recognition, pp. 171-186.
[368] Schonberger, J. L., & Frahm, J. M. (2016). Structure-from-motion revisited. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4104-4113.
[369] Schonberger, J. L., Hardmeier, H., Sattler, T., & Pollefeys, M. (2017). Comparative evaluation of hand-crafted and learned local features. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1482-1491.
[370] Schroeter, D., & Newman, P. (2008). On the robustness of visual homing under landmark uncertainty. In Proceedings of the intelligent autonomous systems, pp. 278-287.
[371] Scott, GL; Longuet-Higgins, HC, An algorithm for associating the features of two images, Proceedings of the Royal Society of London. Series B: Biological Sciences, 244, 1309, 21-26 (1991)
[372] Shah, R., Srivastava, V., & Narayanan, P. (2015). Geometry-aware feature matching for structure from motion applications. In Proceedings of the IEEE winter conference on applications of computer vision, pp. 278-285.
[373] Shaked, A., & Wolf, L. (2017). Improved stereo matching with constant highway networks and reflective confidence learning. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4641-4650.
[374] Shakhnarovich, G. (2005). Learning task-specific similarity. Ph.D. thesis, Massachusetts Institute of Technology.
[375] Shapiro, LS; Brady, JM, Feature-based correspondence: An eigenvector approach, Image and Vision Computing, 10, 5, 283-288 (1992)
[376] Shen, X., Wang, C., Li, X., Yu, Z., Li, J., Wen, C., Cheng, M., & He, Z. (2019). RF-NET: An end-to-end image matching network based on receptive field. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8132-8140.
[377] Shi, J., & Tomasi, C. (1993). Good features to track. Technical report, Cornell University.
[378] Silva, L.; Bellon, ORP; Boyer, KL, Precision range image registration using a robust surface interpenetration measure and enhanced genetic algorithms, IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 5, 762-776 (2005) · Zbl 1092.68111
[379] Simonovsky, M., Gutiérrez-Becker, B., Mateus, D., Navab, N., & Komodakis, N. (2016). A deep metric for multimodal registration. In Proceedings of the international conference on medical image computing and computer-assisted intervention, pp. 10-18.
[380] Simonyan, K.; Vedaldi, A.; Zisserman, A., Learning local feature descriptors using convex optimization, IEEE Transactions on Pattern Analysis and Machine Intelligence, 36, 8, 1573-1585 (2014)
[381] Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P., & Moreno-Noguer, F. (2015). Discriminative learning of deep convolutional feature point descriptors. In Proceedings of the IEEE international conference on computer vision, pp. 118-126.
[382] Sipiran, I.; Bustos, B., Harris 3d: A robust extension of the Harris operator for interest point detection on 3d meshes, The Visual Computer, 27, 11, 963 (2011)
[383] Sivic, J., & Zisserman, A. (2003). Video google: A text retrieval approach to object matching in videos. In Proceedings of the IEEE international conference on computer vision, pp. 1-8.
[384] Smith, SM; Brady, JM, Susan: A new approach to low level image processing, International Journal of Computer Vision, 23, 1, 45-78 (1997)
[385] Sofka, M., Yang, G., & Stewart, C. V. (2007). Simultaneous covariance driven correspondence (CDC) and transformation estimation in the expectation maximization framework. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1-8.
[386] Sokooti, H., de Vos, B., Berendsen, F., Lelieveldt, B. P., Isgum, I., & Staring, M. (2017). Nonrigid image registration using multi-scale 3d convolutional neural networks. In Proceedings of the international conference on medical image computing and computer-assisted intervention, pp. 232-239.
[387] Sotiras, A.; Davatzikos, C.; Paragios, N., Deformable medical image registration: A survey, IEEE Transactions on Medical Imaging, 32, 7, 1153 (2013)
[388] Strecha, C., Lindner, A., Ali, K., & Fua, P. (2009). Training for task specific keypoint detection. In Joint pattern recognition symposium, Springer, pp. 151-160.
[389] Strecha, C., Von Hansen, W., Van Gool, L., Fua, P., & Thoennessen, U. (2008). On benchmarking camera calibration and multi-view stereo for high resolution imagery. In Proceedings of the IEEE Conference on computer vision and pattern recognition, pp. 1-8.
[390] Strecha, C.; Bronstein, A.; Bronstein, M.; Fua, P., Ldahash: Improved matching with smaller descriptors, IEEE Transactions on Pattern Analysis and Machine Intelligence, 34, 1, 66-78 (2012)
[391] Sturm, J., Engelhard, N., Endres, F., Burgard, W., & Cremers, D. (2012). A benchmark for the evaluation of RGB-D slam systems. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, pp. 573-580.
[392] Suh, Y., Cho, M., & Lee, K. M. (2012). Graph matching via sequential Monte Carlo. In Proceedings of the European conference on computer vision, pp. 624-637.
[393] Sun, J., Ovsjanikov, M., & Guibas, L. (2009). A concise and provably informative multi-scale signature based on heat diffusion. In Computer graphics forum, Vol. 28, Wiley Online Library, pp. 1383-1392.
[394] Sweeney, C., Hollerer, T., & Turk, M. (2015). Theia: A fast and scalable structure-from-motion library. In Proceedings of the ACM international conference on multimedia, pp. 693-696.
[395] Swoboda, P., Kuske, J., & Savchynskyy, B. (2017). A dual ascent framework for Lagrangean decomposition of combinatorial problems. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1596-1606.
[396] Swoboda, P., Mokarian, A., Theobalt, C., Bernard, F., et al. (2019). A convex relaxation for multi-graph matching. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 11,156-11,165.
[397] Swoboda, P., Rother, C., Abu Alhaija, H., Kainmuller, D., & Savchynskyy, B. (2017). A study of lagrangean decompositions and dual ascent solvers for graph matching. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1607-1616.
[398] Takita, K.; Aoki, T.; Sasaki, Y.; Higuchi, T.; Kobayashi, K., High-accuracy subpixel image registration based on phase-only correlation, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 86, 8, 1925-1934 (2003)
[399] Tang, F., Lim, S. H., Chang, N. L., & Tao, H. (2009). A novel feature descriptor invariant to complex brightness changes. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2631-2638.
[400] Tevs, A., Berner, A., Wand, M., Ihrke, I., & Seidel, H. P. (2011). Intrinsic shape matching by planned landmark sampling. In Computer graphics forum, Vol. 30, Wiley Online Library, pp. 543-552.
[401] Thomee, B.; Shamma, DA; Friedland, G.; Elizalde, B.; Ni, K.; Poland, D.; Borth, D.; Li, LJ, Yfcc100m: The new data in multimedia research, Communications of the ACM, 59, 2, 64-73 (2016)
[402] Tian, Y., Fan, B., & Wu, F. (2017). L2-net: Deep learning of discriminative patch descriptor in Euclidean space. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 661-669.
[403] Tian, Y., Yan, J., Zhang, H., Zhang, Y., Yang, X., & Zha, H. (2012). On the convergence of graph matching: Graduated assignment revisited. In Proceedings of the European conference on computer vision, pp. 821-835.
[404] Tian, Y., Yu, X., Fan, B., Wu, F., Heijnen, H., & Balntas, V. (2019). Sosnet: Second order similarity regularization for local descriptor learning. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 11,016-11,025.
[405] Toews, M., & Wells, W. (2009). Sift-rank: Ordinal description for invariant feature correspondence. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 172-177.
[406] Tola, E.; Lepetit, V.; Fua, P., Daisy: An efficient dense descriptor applied to wide-baseline stereo, IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 5, 815-830 (2010)
[407] Tombari, F., Salti, S., & Di Stefano, L. (2010a). Unique shape context for 3d data description. In Proceedings of the ACM workshop on 3D object retrieval, pp. 57-62.
[408] Tombari, F., Salti, S., & Di Stefano, L. (2010b). Unique signatures of histograms for local surface description. In Proceedings of the European conference on computer vision, pp. 356-369.
[409] Tombari, F.; Salti, S.; Di Stefano, L., Performance evaluation of 3d keypoint detectors, International Journal of Computer Vision, 102, 1-3, 198-220 (2013)
[410] Torr, P. H. (2003). Solving Markov random fields using semi definite programming. In Proceeding of AISTATS, pp. 1-8.
[411] Torr, P., & Zisserman, A. (1998). Robust computation and parametrization of multiple view relations. In Proceedings of the international conference on computer vision, pp. 727-732.
[412] Torresani, L.; Kolmogorov, V.; Rother, C., A dual decomposition approach to feature correspondence, IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 2, 259-271 (2012)
[413] Torr, PH; Zisserman, A., Mlesac: A new robust estimator with application to estimating image geometry, Computer Vision and Image Understanding, 78, 1, 138-156 (2000)
[414] Trajković, M.; Hedley, M., Fast corner detection, Image and Vision Computing, 16, 2, 75-87 (1998)
[415] Tron, R., Zhou, X., Esteves, C., & Daniilidis, K. (2017). Fast multi-image matching via density-based clustering. In Proceedings of the IEEE international conference on computer vision, pp. 4057-4066.
[416] Truong, P., Danelljan, M., & Timofte, R. (2020). Glu-net: Global-local universal network for dense flow and correspondences. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 6258-6268.
[417] Trzcinski, T., & Lepetit, V. (2012). Efficient discriminative projections for compact binary descriptors. In Proceedings of the European conference on computer vision, pp. 228-242.
[418] Trzcinski, T., Christoudias, M., Fua, P., & Lepetit, V. (2013). Boosting binary keypoint descriptors. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2874-2881.
[419] Trzcinski, T., Christoudias, M., Lepetit, V., & Fua, P. (2012). Learning image descriptors with the boosting-trick. In Advances in neural information processing systems, pp. 269-277.
[420] Trzcinski, T.; Christoudias, M.; Lepetit, V., Learning image descriptors with boosting, IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 3, 597-610 (2014)
[421] Tsin, Y., & Kanade, T. (2004). A correlation-based approach to robust point set registration. In Proceedings of the European conference on computer vision, pp. 558-569. · Zbl 1098.68878
[422] Tuytelaars, T.; Van Gool, L., Matching widely separated views based on affine invariant regions, International Journal of Computer Vision, 59, 1, 61-85 (2004)
[423] Tuytelaars, T.; Mikolajczyk, K., Local invariant feature detectors: A survey, Foundations and Trends® in Computer Graphics and Vision, 3, 3, 177-280 (2008)
[424] Ufer, N., & Ommer, B. (2017). Deep semantic feature matching. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 6914-6923.
[425] Umeyama, S., An eigen decomposition approach to weighted graph matching problems, IEEE Transactions on Pattern Analysis and Machine Intelligence, 10, 5, 695-703 (1988) · Zbl 0678.05049
[426] Unnikrishnan, R., & Hebert, M. (2008). Multi-scale interest regions from unorganized point clouds. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp. 1-8.
[427] van Wyk, BJ; van Wyk, MA, A POCS-based graph matching algorithm, IEEE Transactions on Pattern Analysis and Machine Intelligence, 26, 11, 1526-1530 (2004)
[428] Van Kaick, O., Zhang, H., Hamarneh, G., & Cohen-Or, D. (2011). A survey on shape correspondence. In Computer graphics forum, Vol. 30, Wiley Online Library, pp. 1681-1707.
[429] Verdie, Y., Yi, K., Fua, P., & Lepetit, V. (2015). Tilde: A temporally invariant learned detector. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5279-5288.
[430] Vongkulbhisal, J., De la Torre, F., & Costeira, J. P. (2017). Discriminative optimization: Theory and applications to point cloud registration. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4104-4112.
[431] Vongkulbhisal, J., Irastorza Ugalde, B., De la Torre, F., & Costeira, J. P. (2018). Inverse composition discriminative optimization for point cloud registration. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2993-3001.
[432] Wang, J., & Zhang, M. (2020). Deepflash: An efficient network for learning-based medical image registration. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 4444-4452.
[433] Wang, C., Bronstein, M. M., Bronstein, A. M., & Paragios, N. (2011). Discrete minimum distortion correspondence problems for non-rigid shape matching. In Proceedings of the international conference on scale space and variational methods in computer vision, pp. 580-591.
[434] Wang, Z., Fan, B., & Wu, F. (2011). Local intensity order pattern for feature description. In Proceedings of the international conference on computer vision, pp. 603-610.
[435] Wang, H., Guo, J., Yan, D. M., Quan, W., & Zhang, X. (2018b). Learning 3d keypoint descriptors for non-rigid shape matching. In Proceedings of the European conference on computer vision, pp. 3-19.
[436] Wang, J., Kumar, S., & Chang, S. F. Semi-supervised hashing for scalable image retrieval. In Proceedings of the IEEE conference on computer vision and pattern recognition.
[437] Wang, T., Liu, H., Li, Y., Jin, Y., Hou, X., & Ling, H. (2020). Learning combinatorial solver for graph matching. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 7568-7577.
[438] Wang, J., Song, Y., Leung, T., Rosenberg, C., Wang, J., Philbin, J., Chen, B., & Wu, Y. (2014). Learning fine-grained image similarity with deep ranking. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1386-1393.
[439] Wang, G., Wang, Z., Chen, Y., Zhou, Q., & Zhao, W. (2016). Context-aware Gaussian fields for non-rigid point set registration. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5811-5819.
[440] Wang, F., Xue, N., Yu, J. G., & Xia, G. S. (2020). Zero-assignment constraint for graph matching with outliers. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 3033-3042.
[441] Wang, F., Xue, N., Zhang, Y., Bai, X., & Xia, G. S. (2018a). Adaptively transforming graph matching. In Proceedings of the European conference on computer vision, pp. 625-640.
[442] Wang, R., Yan, J., & Yang, X. (2019). Learning combinatorial embedding networks for deep graph matching. In ICCV.
[443] Wang, Q., Zhou, X., & Daniilidis, K. (2018). Multi-image semantic matching by mining consistent features. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 685-694.
[444] Wang, J., Zhou, F., Wen, S., Liu, X., & Lin, Y. (2017). Deep metric learning with angular loss. In Proceedings of the IEEE international conference on computer vision, pp. 2593-2601.
[445] Wang, Z.; Fan, B.; Wang, G.; Wu, F., Exploring local and overall ordinal information for robust feature description, IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 11, 2198-2211 (2015)
[446] Wang, G.; Wang, Z.; Chen, Y.; Zhao, W., Robust point matching method for multimodal retinal image registration, Biomedical Signal Processing and Control, 19, 68-76 (2015)
[447] Wei, L., Huang, Q., Ceylan, D., Vouga, E., & Li, H. (2016). Dense human body correspondences using convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1544-1553.
[448] Wei, X., Zhang, Y., Gong, Y., & Zheng, N. (2018). Kernelized subspace pooling for deep local descriptors. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1867-1875.
[449] Weinberger, KQ; Saul, LK, Distance metric learning for large margin nearest neighbor classification, Journal of Machine Learning Research, 10, Feb, 207-244 (2009) · Zbl 1235.68204
[450] Weiss, Y., Torralba, A., & Fergus, R. (2009) Spectral hashing. In Advances in neural information processing systems, pp. 1753-1760.
[451] Windheuser, T., Vestner, M., Rodolà, E., Triebel, R., & Cremers, D. (2014). Optimal intrinsic descriptors for non-rigid shape analysis. In Proceedings of the British machine vision conference.
[452] Wohlhart, P., & Lepetit, V. (2015). Learning descriptors for object recognition and 3d pose estimation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3109-3118.
[453] Wu, Y., Lim, J., & Yang, M. H. (2015b). Object tracking benchmark. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(9), 1834-1848.
[454] Wu, J., Zhang, H., & Guan, Y. (2014). Visual loop closure detection by matching binary visual features using locality sensitive hashing. In Proceeding of the world congress on intelligent control and automation, pp. 940-945.
[455] Wu, C. Visualsfm: A visual structure from motion system. Retrieved November 16, 2018 from http://ccwu.me/vsfm/doc.html.
[456] Wu, G.; Kim, M.; Wang, Q.; Munsell, BC; Shen, D., Scalable high-performance image registration framework by unsupervised deep feature representations learning, IEEE Transactions on Biomedical Engineering, 63, 7, 1505-1516 (2015)
[457] Xiao, J., Owens, A., & Torralba, A. (2013). Sun3d: A database of big spaces reconstructed using SFM and object labels. In Proceedings of the IEEE international conference on computer vision, pp. 1625-1632.
[458] Xie, J., Wang, M., & Fang, Y. (2016). Learned binary spectral shape descriptor for 3d shape correspondence. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3309-3317.
[459] Yan, J., Li, Y., Liu, W., Zha, H., Yang, X., & Chu, S. M. (2014). Graduated consistency-regularized optimization for multi-graph matching. In Proceedings of the European conference on computer vision, pp. 407-422.
[460] Yan, J., Ren, Z., Zha, H., & Chu, S. (2016a). A constrained clustering based approach for matching a collection of feature sets. In Proceedings of the international conference on pattern recognition, pp. 3832-3837.
[461] Yan, J., Tian, Y., Zha, H., Yang, X., Zhang, Y., & Chu, S. M. (2013). Joint optimization for consistent multiple graph matching. In Proceedings of the IEEE international conference on computer vision, pp. 1649-1656.
[462] Yan, J., Xu, H., Zha, H., Yang, X., Liu, H., & Chu, S. (2015c). A matrix decomposition perspective to multiple graph matching. In Proceedings of the IEEE international conference on computer vision, pp. 199-207.
[463] Yan, J., Yin, X. C., Lin, W., Deng, C., Zha, H., & Yang, X. (2016b). A short survey of recent advances in graph matching. In Proceedings of the ACM on international conference on multimedia retrieval, pp. 167-174.
[464] Yan, J., Zhang, C., Zha, H., Liu, W., Yang, X., & Chu, S. M. (2015d). Discrete hyper-graph matching. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1520-1528.
[465] Yan, J.; Cho, M.; Zha, H.; Yang, X.; Chu, SM, Multi-graph matching via affinity optimization with graduated consistency regularization, IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 6, 1228-1242 (2015)
[466] Yang, M., Wu, F., & Li, W. (2020). Waveletstereo: Learning wavelet coefficients of disparity map in stereo matching. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 12,885-12,894.
[467] Yang, X.; Kwitt, R.; Styner, M.; Niethammer, M., Quicksilver: Fast predictive image registration-a deep learning approach, NeuroImage, 158, 378-396 (2017)
[468] Yang, J.; Li, H.; Campbell, D.; Jia, Y., Go-ICP: A globally optimal solution to 3d ICP point-set registration, IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 11, 2241-2254 (2016)
[469] Yang, K.; Pan, A.; Yang, Y.; Zhang, S.; Ong, S.; Tang, H., Remote sensing image registration using multiple image features, Remote Sensing, 9, 6, 581 (2017)
[470] Yan, J.; Wang, J.; Zha, H.; Yang, X.; Chu, S., Consistency-driven alternating optimization for multigraph matching: A unified approach, IEEE Transactions on Image Processing, 24, 3, 994-1009 (2015) · Zbl 1408.94765
[471] Yao, Y., Deng, B., Xu, W., & Zhang, J. (2020). Quasi-Newton solver for robust non-rigid registration. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 7600-7609.
[472] Ye, Y.; Shan, J.; Bruzzone, L.; Shen, L., Robust registration of multimodal remote sensing images based on structural similarity, IEEE Transactions on Geoscience and Remote Sensing, 55, 5, 2941-2958 (2017)
[473] Yew, Z. J., & Lee, G. H. (2020). RPM-NET: Robust point matching using learned features. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11,824-11,833.
[474] Yi, K. M., Trulls, E., Lepetit, V., & Fua, P. (2016). Lift: Learned invariant feature transform. In Proceedings of the European conference on computer vision, pp. 467-483.
[475] Yin, Z., & Shi, J. (2018). Geonet: Unsupervised learning of dense depth, optical flow and camera pose. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1983-1992.
[476] Yu, T., Wang, R., Yan, J., & Li, B. (2020a). Learning deep graph matching with channel-independent embedding and Hungarian attention. In International conference on learning representations.
[477] Yu, T., Yan, J., & Li, B. (2020b). Determinant regularization for gradient-efficient graph matching. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 7123-7132.
[478] Yu, T., Yan, J., Wang, Y., Liu, W., et al. (2018). Generalizing graph matching beyond quadratic assignment model. In Advances in neural information processing systems, pp. 861-871.
[479] Zagoruyko, S., & Komodakis, N. (2015). Learning to compare image patches via convolutional neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4353-4361.
[480] Zaharescu, A., Boyer, E., Varanasi, K., & Horaud, R. (2009). Surface feature detection and description with applications to mesh matching. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 373-380.
[481] Zanfir, A., & Sminchisescu, C. (2018). Deep learning of graph matching. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2684-2693.
[482] Zaslavskiy, M.; Bach, F.; Vert, JP, A path following algorithm for the graph matching problem, IEEE Transactions on Pattern Analysis and Machine Intelligence, 31, 12, 2227-2242 (2009)
[483] Zass, R., & Shashua, A. (2008). Probabilistic graph and hypergraph matching. In Proceedings of the IEEE conference on computer vision and pattern recognition, IEEE, pp. 1-8.
[484] Zbontar, J., & LeCun, Y. (2015). Computing the stereo matching cost with a convolutional neural network. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1592-1599.
[485] Zbontar, J.; LeCun, Y., Stereo matching by training a convolution neural network to compare image patches, The Journal of Machine Learning Research, 17, 1, 2287-2318 (2016) · Zbl 1360.68726
[486] Zeng, Z., Chan, T. H., Jia, K., & Xu, D. (2012). Finding correspondence from multiple images via sparse and low-rank decomposition. In Proceedings of the European conference on computer vision, pp. 325-339.
[487] Zeng, A., Song, S., Nießner, M., Fisher, M., Xiao, J., & Funkhouser, T. (2017). 3dmatch: Learning local geometric descriptors from RGB-D reconstructions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1802-1811.
[488] Zeng, Y., Wang, C., Wang, Y., Gu, X., Samaras, D., & Paragios, N. (2010). Dense non-rigid surface registration using high-order graph matching. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 382-389.
[489] Zhang, H. (2011). Borf: Loop-closure detection with scale invariant visual features. In Proceedings of the IEEE international conference on robotics and automation, pp. 3125-3130.
[490] Zhang, L., & Rusinkiewicz, S. (2018). Learning to detect features in texture images. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 6325-6333.
[491] Zhang, F., Prisacariu, V., Yang, R., & Torr, P. H. (2019a). Ga-net: Guided aggregation net for end-to-end stereo matching. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 185-194.
[492] Zhang, Z., Shi, Q., McAuley, J., Wei, W., Zhang, Y., & Van Den Hengel, A. (2016). Pairwise matching through max-weight bipartite belief propagation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1202-1210.
[493] Zhang, J., Sun, D., Luo, Z., Yao, A., Zhou, L., Shen, T., Chen, Y., Quan, L., & Liao, H. (2019b). Learning two-view correspondences and geometry using order-aware network. In Proceedings of the IEEE international conference on computer vision, pp. 5845-5854.
[494] Zhang, S., Yang, Y., Yang, K., Luo, Y., & Ong, S. H. (2017a). Point set registration with global-local correspondence and transformation estimation. In Proceedings of the IEEE international conference on computer vision, pp. 2669-2677.
[495] Zhang, X., Yu, F. X., Karaman, S., & Chang, S. F. (2017b). Learning discriminative and transformation covariant local feature detectors. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 6818-6826.
[496] Zhang, X., Yu, F. X., Kumar, S., & Chang, S. F. (2017c). Learning spread-out local feature descriptors. In Proceedings of the IEEE international conference on computer vision, pp. 4595-4603.
[497] Zhang, X.; Qu, Y.; Yang, D.; Wang, H.; Kymer, J., Laplacian scale-space behavior of planar curve corners, IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 11, 2207-2217 (2015)
[498] Zhang, X.; Wang, H.; Smith, AW; Ling, X.; Lovell, BC; Yang, D., Corner detection based on gradient correlation matrices of planar curves, Pattern Recognition, 43, 4, 1207-1223 (2010) · Zbl 1192.68625
[499] Zhao, J., & Ma, J. (2017). Visual homing by robust interpolation for sparse motion flow. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, pp. 1282-1288.
[500] Zhao, C., Cao, Z., Li, C., Li, X., & Yang, J. (2019). Nm-net: Mining reliable neighbors for robust feature correspondences. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 215-224.
[501] Zhao, Q.; Karisch, SE; Rendl, F.; Wolkowicz, H., Semidefinite programming relaxations for the quadratic assignment problem, Journal of Combinatorial Optimization, 2, 1, 71-109 (1998) · Zbl 0904.90145
[502] Zheng, L.; Yang, Y.; Tian, Q., Sift meets CNN: A decade survey of instance retrieval, IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 5, 1224-1244 (2018)
[503] Zhong, Y. (2009). Intrinsic shape signatures: A shape descriptor for 3d object recognition. In Proceedings of the IEEE international conference on computer vision workshops, pp. 689-696.
[504] Zhou, W., Li, H., & Tian, Q. (2017). Recent advance in content-based image retrieval: A literature survey. arXiv preprint arXiv:1706.06064.
[505] Zhou, W., Li, H., Lu, Y., & Tian, Q. (2011). Large scale image search with geometric coding. In Proceedings of the ACM international conference on multimedia, pp. 1349-1352.
[506] Zhou, W., Lu, Y., Li, H., Song, Y., & Tian, Q. (2010). Spatial coding for large scale partial-duplicate web image search. In Proceedings of the ACM international conference on multimedia, pp. 511-520.
[507] Zhou, X., Zhu, M., & Daniilidis, K. (2015). Multi-image matching via fast alternating minimization. In Proceedings of the IEEE international conference on computer vision, pp. 4032-4040.
[508] Zhou, L., Zhu, S., Luo, Z., Shen, T., Zhang, R., Zhen, M., Fang, T., & Quan, L. (2018). Learning and matching multi-view descriptors for registration of point clouds. In Proceedings of the European conference on computer vision, pp. 505-522.
[509] Zhou, F.; De la Torre, F., Factorized graph matching, IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 9, 1774-1789 (2015)
[510] Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference on computer vision, pp. 2223-2232.
[511] Zieba, M., Semberecki, P., El-Gaaly, T., & Trzcinski, T. (2018). Bingan: Learning compact binary descriptors with a regularized GAN. In Advances in neural information processing systems, pp. 3608-3618.
[512] Zitnick, C. L., & Ramnath, K. (2011). Edge foci interest points. In Proceedings of the IEEE international conference on computer vision, pp. 359-366.
[513] Zitova, B.; Flusser, J., Image registration methods: A survey, Image and Vision Computing, 21, 11, 977-1000 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.