×

zbMATH — the first resource for mathematics

Testing for symmetry and conditional symmetry using asymmetric kernels. (English) Zbl 1440.62147
Summary: We derive nonparametric tests of symmetry using asymmetric kernels with either vanishing or fixed bandwidths. The idea is to split the sample around the symmetry point and then test whether the distributions to the right and to the left are the same. We show how to extend the approach to examine conditional symmetry by deriving conditions under which our tests are applicable to residuals from semiparametric models with a (sufficiently smooth) nonparametric link function. The latter setting is general enough to entertain as a particular case a unknown symmetry point, which we duely estimate by the sample median. The conditions we derive ensure that the resulting estimation error is asymptotically negligible. Simulations show that the asymptotic tests perform well even in very small samples, entailing better size and power properties than some of the existing symmetry tests.

MSC:
62G10 Nonparametric hypothesis testing
62G20 Asymptotic properties of nonparametric inference
62G07 Density estimation
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abramowitz, M., Stegun, I. A. (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover Publications. · Zbl 0543.33001
[2] Ahmad, I. A., Li, Q. (1997). Testing symmetry by kernel methods. Journal of Nonparametric Statistics, \(7\), 279-293. · Zbl 0926.62032
[3] Ahmad, I. A., van Belle, G. (1974). Mesuring affinity of distributions. In F. Proschan, R. J. Serfling (Eds.), Reliability and Biometry: Statistical Analysis of Life Testing. Philadelphia: SIAM.
[4] Aït-Sahalia, Y., Bickel, P. J., Stoker, T. M. (2001). Goodness-of-fit tests for kernel regression with an application to option implied volatilities. Journal of Econometrics, 105, 363412. · Zbl 1004.62042
[5] Aït-Sahalia, Y., Fan, J.-I., Peng, H. (2009). Nonparametric transition-based tests for diffusions. Journal of the American Statistical Association, 104, 1102-1116. · Zbl 1388.62124
[6] Anderson, N. H., Hall, P., Titterington, D. M. (1994). Two-sample test statistics for measuring discrepancies between two multivariate probability density functions using kernel-based density estimates. Journal of Multivariate Analysis, 50, 41-54. · Zbl 0798.62055
[7] Bai, J., Ng, S. (2001). A consistent test for conditional symmetry in time series models. Journal of Econometrics, 103, 225-258. · Zbl 0971.62045
[8] Bickel, P. J. (1982). On adaptive estimation. Annals of Statistics, 10, 647-671. · Zbl 0489.62033
[9] Bickel, P. J., Rosenblatt, M. (1973). On some global measures of the deviations of density function estimates. Annals of Statistics, \(1\), 1071-1095. · Zbl 0275.62033
[10] Bouezmarni, T., Rombouts, J. V. K. (2010). Nonparametric density estimation for multivariate bounded data. Journal of Statistical Planning and Inference, 140, 139-152. · Zbl 1178.62026
[11] Bouezmarni, T., Scaillet, O. (2005). Consistency of asymmetric kernel density estimators and smoothed histograms with application to income data. Econometric Theory, 21, 390-412. · Zbl 1062.62058
[12] Campbell, J. Y., Hentschel, L. (1992). No news is good news. Journal of Financial Economics, 31, 281-318.
[13] Chen, S. X. (2000). Probability density function estimation using gamma kernels. Annals of the Institute of Statistical Mathematics, 52, 471-480. · Zbl 0960.62038
[14] Delgado, M. A., Escanciano, J. C. (2007). Nonparametric tests for conditional symmetry in dynamic models. Journal of Econometrics, 141, 652-682. · Zbl 1418.62192
[15] Fan, Y. (1995). Bootstrapping a consistent nonparametric goodness-of-fit test. Econometric Reviews, 14, 367-382. · Zbl 0832.62038
[16] Fan, Y. (1998). Goodness-of-fit tests based on kernel density estimators with fixed smoothing parameters. Econometric Theory, 14, 604-621.
[17] Fan, Y., Gencay, R. (1993). Hypotheses testing based on modified nonparametric estimation of an affinity measure between two distributions. Journal of Nonparametric Statistics, \(2\), 389-403. · Zbl 1360.62212
[18] Fan, Y., Gencay, R. (1995). A consistent nonparametric test of symmetry in linear regression models. Journal of the American Statistical Association, 90, 551-557. · Zbl 0826.62031
[19] Fan, Y., Ullah, A. (1999). On goodness-of-fit tests for weakly dependent processes using kernel methods. Journal of Nonparametric Statistics, 11, 337-360. · Zbl 0955.62044
[20] Fernandes, M., Grammig, J. (2005). Nonparametric specification tests for conditional duration models. Journal of Econometrics, 127, 35-68. · Zbl 1337.62216
[21] Fernandes, M., Monteiro, P. K. (2005). Central limit theorem for asymmetric kernel functionals. Annals of the Institute of Statistical Mathematics, 57, 425-442. · Zbl 1095.62041
[22] Gouriéroux, C., Laurent, J. P., Scaillet, O. (2000). Sensitivity analysis of Value at Risk. Journal of Empirical Finance, \(7\), 225-245.
[23] Gustafsson, J., Hagmann, M., Nielsen, J. P., Scaillet, O. (2009). Local transformation kernel density estimation of loss distributions. Journal of Business and Economic Statistics, 27, 161-175.
[24] Hagmann, M., Scaillet, O. (2007). Local multiplicative bias correction for asymmetric kernel density estimators. Journal of Econometrics, 141, 213-249. · Zbl 1418.62136
[25] Hong, Y., White, H. (2004). Asymptotic distribution theory for nonparametric entropy measures of serial dependence. Econometrica, 73, 837-901. · Zbl 1152.91729
[26] Khuri, A., Casella, G. (2002). The existence of the first negative moment revisited. The American Statistician, 56, 44-47. · Zbl 1182.62020
[27] Koroljuk, V. S., Borovskich, Y. V. (1994). Theory of U-statistics. Dordrecht: Kluwer Academic Publishers.
[28] Lambert, P., Laurent, S., Veredas, D. (2012). Testing conditional asymmetry: A residual-based approach. Journal of Economic Dynamics and Control, 36, 1229-1247. · Zbl 1345.91085
[29] Newey, W. K. (1988). Adaptive estimation of regression models via moment restrictions. Journal of Econometrics, 38, 301-339. · Zbl 0686.62045
[30] Powell, J. L. (1994). Estimation of semiparametric models. In R. F. Engle, D. L. MacFadden (Eds.), Handbook of Econometrics IV (chapter 41, pp. 2443-2521). Amsterdam: Elsevier Science.
[31] Randles, R. H., Fligner, M. A., Policello, G. E., Wolf, D. A. (1980). An asymptotically distribution-free test for symmetry versus asymmetry. Journal of the American Statistical Association, 75, 168-172. · Zbl 0427.62024
[32] Robinson, P. M. (1991). Consistent nonparametric entropy-based testing. Review of Economic Studies, 58, 437-453. · Zbl 0719.62055
[33] Scaillet, O. (2004). Density estimation using inverse and reciprocal inverse Gaussian kernels. Journal of Nonparametric Statistics, 16, 217-226. · Zbl 1049.62038
[34] Scaillet, O. (2007). Kernel based goodness-of-fit tests for copulas with fixed smoothing parameters. Journal of Multivariate Analysis, 98, 533-543. · Zbl 1107.62037
[35] Shen, X. (1997). On methods of sieves and penalization. Annals of Statistics, 25, 2555-2591. · Zbl 0895.62041
[36] Shen, X., Wong, W. H. (1994). Convergence rates of sieve estimates. Annals of Statistics, 22, 580-615. · Zbl 0805.62008
[37] Silverman, B. W. (1986). Density Estimation in Statistics and Data Analysis. London: Chapman and Hall. · Zbl 0617.62042
[38] Stone, C. J. (1982). Optimal global rates of convergence for nonparametric regression. Annals of Statistics, 10, 1040-1053. · Zbl 0511.62048
[39] Zheng, J. X. (1998). Consistent specification testing for conditional symmetry. Econometric Theory, 14, 139-149.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.