zbMATH — the first resource for mathematics

A dynamic Nelson-Siegel model with forward-looking macroeconomic factors for the yield curve in the US. (English) Zbl 1425.91414
Summary: This paper employs a factor-augmented dynamic Nelson-Siegel (FADNS) model to predict the yield curve in the US that relies on a large data set of mostly forward-looking macroeconomic variables. FADNS models significantly improve interest rate forecasts relative to many extant models in the literature. For longer horizons, it outperforms autoregressive alternatives, with reductions in mean absolute forecast error of up to 18% using quarterly data and of up to 40% at higher frequencies. For shorter horizons, it is still competitive against autoregressive forecasts, outclassing them for 7- and 10-year yields. The out-of-sample analysis reveals that the forward-looking nature of the indicators we employ is crucial for improving forecasting performance. Including them indeed reduces the mean absolute error with respect to specifications based on backward-looking macroeconomic indicators for any model we consider.
91G30 Interest rates, asset pricing, etc. (stochastic models)
91B82 Statistical methods; economic indices and measures
Full Text: DOI
[1] Aguiar-Conraria, L.; Martins, M.; Soares, M., The yield curve and the macro-economy across time and frequencies, J. Econ. Dyn. Control, 36, 1950-1970 (2012) · Zbl 1346.91153
[2] Almeida, C.; Gravelin, J. J.; Joslin, S., Do interest rate options contain information about excess returns?, J. Econ., 164, 35-44 (2011) · Zbl 1441.62256
[3] Almeida, C.; Vicente, J., The role of no-arbitrage on forecasting: lessons from a parametric term structure model, J. Bank. Financ., 32, 2695-2705 (2008)
[4] Altavilla, C.; Giacomini, R.; Constantini, R., Bond returns and market expectations, J. Financ. Econ., 12, 708-729 (2014)
[5] Altavilla, C.; Giacomini, R.; Ragusa, G., Anchoring the yield curve using survey expectations, J. Appl. Econ., 32, 1055-1068 (2017)
[6] Ang, A.; Bekaert, G.; Wei, M., Do macro variables, asset markets, or surveys forecast inflation better?, J. Monet. Econ., 54, 1163-1212 (2007)
[7] Ang, A.; Piazzesi, M., A no-arbitrage vector autoregression of term structure dynamics with macroeconomic and latent variables, J. Monet. Econ., 50, 745-787 (2003)
[8] Bauer, M.; Hamilton, J., Robust bond risk premia, Rev. Financ. Stud., 31, 399-448 (2018)
[9] Bernanke, B.; Boivin, J., Monetary policy in a data-rich environment, J. Monet. Econ., 50, 525-546 (2003)
[10] Bernanke, B.; Boivin, J.; Eliasz, P., Measuring the effects of monetary policy: a factor-augmented vector autoregressive (FAVAR) approach, Q. J. Econ., 120, 387-422 (2005)
[11] Carriero, A., Forecasting the yield curve using priors from no arbitrage affine term structure models, Int. Econ. Rev., 52, 425-459 (2011)
[12] Carriero, A.; Giacomini, R., How useful are no-arbitrage restrictions for forecasting the term structure of interest rates?, J. Econ., 164, 21-34 (2011) · Zbl 1441.62260
[13] Cieslak, A.; Povala, P., Expected returns in treasury bonds, Rev. Financ. Stud., 28, 2859-2901 (2015)
[14] Coroneo, L.; Giannone, D.; Modugno, M., Unspanned macroeconomic factors in the yield curve, J. Bus. Econ. Stat., 34, 472-485 (2016)
[15] Diebold, F.; Li, C., Forecasting the term structure of government bond yields, J. Econ., 130, 337-364 (2006) · Zbl 1337.62324
[16] Diebold, F.; Rudebusch, G.; Aruoba, S., The macroeconomy and the yield curve: a dynamic latent factor approach, J. Econ., 131, 309-338 (2006) · Zbl 1337.62356
[17] van Dijk, D.; Koopman, S.; van der Wel, M.; Wright, J., Forecasting interest rates with shifting endpoints, J. Appl. Econ., 29, 693-712 (2014)
[18] Duffee, G., Term premia and interest rate forecast in affine models, J. Financ., 57, 405-443 (2002)
[19] Duffee, G., Forecasting with the Term Structure: The Role of No-Arbitrage Restrictions, working paper (2011), Department of Economics, John Hopkins University
[20] Exterkate, P.; van Dijk, D.; Heij, C.; Groenen, P., Forecasting the yield curve in a data-rich environment using the factor-augmented Nelson-Siegel model, J. Forecast., 32, 193-214 (2013) · Zbl 1397.62410
[21] Favero, C.; Niu, L.; Sala, L., Term structure forecasting: no-arbitrage restricitions versus large information set, J. Forecast., 31, 124-156 (2012) · Zbl 1397.91582
[22] Gonçalves, S.; White, H., Bootstrap standard error estimates for linear regression, J. Am. Stat. Assoc., 100, 970-979 (2005) · Zbl 1117.62347
[23] Guidolin, M.; Pedio, M., Forecasting and Trading Monetary Policy Effects on the Riskless Yield Curve With Regime Switching Nelson-Siegel models, IGIER working paper (2019)
[24] Guidolin, M.; Thornton, D. L., Predictions of short-term rates and the expectations hypothesis, Int. J. Forecast., 34, 636-664 (2018)
[25] Hansen, P. R.; Lunde, A.; Nason, J. M., The model confidence set, Econometrica, 79, 453-497 (2011) · Zbl 1210.62030
[26] Hördahl, P.; Tristani, O.; Vestin, D., A joint econometric model of macroeconomic and term-structure dynamics, J. Econ., 131, 405-444 (2006) · Zbl 1337.62368
[27] Joslin, S.; Priebsch, M.; Singleton, K., Risk premiums in dynamic term structure models with unspanned macro risks, J. Financ., 69, 1197-1233 (2014)
[28] Joslin, S.; Singleton, K.; Zhu, H., A new perspective on Gaussian dynamic term structure models, Rev. Financ. Stud., 24, 926-970 (2011)
[29] Kim, D.; Orphanides, A., Term structure estimation with survey data on interest rate forecast, J. Financ. Quant. Anal., 47, 241-272 (2012)
[30] Ludvigson, S.; Ng, S., Macro factors in bond risk premia, Rev. Financ. Stud., 22, 5027-5067 (2009)
[31] Moench, E., Forecasting the yield curve in a data-rich environment: a no-arbitrage factor-augmented VAR approach, J. Econ., 146, 26-43 (2008) · Zbl 1418.62521
[32] Nelson, C.; Siegel, A., Parsimonious modeling of yield curves, J. Bus., 60, 473-489 (1987)
[33] Orphanides, A.; Wei, M., Evolving macroeconomic perceptions and the term structure of interest rate, J. Econ. Dyn. Control, 36, 239-254 (2012) · Zbl 1238.91118
[34] de Pooter, M.; Ravazzolo, F.; van Dijk, D., Predicting the Term Structure of Interest Rates: Incorporating Parameter Uncertainty, Model Uncertainty and Macroeconomic Information, Tinbergen Institute Discussion Paper (2007)
[35] de Pooter, M.; Ravazzolo, F.; van Dijk, D., Term Structure Forecasting Using Macro Factors and Forecast Combination, Federal Reserve Working Paper (2010)
[36] Steeley, J., Forecasting the term structure when short–term rates are near zero, J. Forecast., 33, 350-363 (2014) · Zbl 1397.91584
[37] Stock, J.; Watson, M., Forecasting using principal components from a large number of predictors, J. Am. Stat. Assoc., 97, 1167-1179 (2002) · Zbl 1041.62081
[38] Stock, J.; Watson, M., Macroeconomic forecasting using diffusion indexes, J. Bus. Econ. Stat., 20, 147-162 (2002)
[39] Vieira, F.; Fernandes, M.; Chague, F., Forecasting the Brazilian yield curve using forward-looking variables, Int. J. Forecast., 33, 121-131 (2017)
[40] White, H., A reality check for data snooping, Econometrica, 68, 1097-1126 (2000) · Zbl 1008.62116
[41] Willmott, C.; Matsuura, K., Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance, Clim. Res., 30, 79-82 (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.