zbMATH — the first resource for mathematics

Testing for jump spillovers without testing for jumps. (English) Zbl 1441.62262
Summary: This article develops statistical tools for testing conditional independence among the jump components of the daily quadratic variation, which we estimate using intraday data. To avoid sequential bias distortion, we do not pretest for the presence of jumps. If the null is true, our test statistic based on daily integrated jumps weakly converges to a Gaussian random variable if both assets have jumps. If instead at least one asset has no jumps, then the statistic approaches zero in probability. We show how to compute asymptotically valid bootstrap-based critical values that result in a consistent test with asymptotic size equal to or smaller than the nominal size. Empirically, we study jump linkages between US futures and equity index markets. We find not only strong evidence of jump cross-excitation between the SPDR exchange-traded fund and E-mini futures on the S&P 500 index, but also that integrated jumps in the E-mini futures during the overnight period carry relevant information.
62P05 Applications of statistics to actuarial sciences and financial mathematics
62G10 Nonparametric hypothesis testing
91G70 Statistical methods; risk measures
Full Text: DOI
[1] Aït-Sahalia, Y.; Cacho-Diaz, J.; Hurd, T., “Portfolio Choice With Jumps: A Closed-Form Solution,”, Annals of Applied Probability, 19, 556-584 (2009) · Zbl 1170.91364
[2] Aït-Sahalia, Y.; Cacho-Diaz, J.; Laeven, R. J. A., Modelling Financial Contagion: Using Mutually Exciting Jump Processes, Journal of Financial Economics, 117, 585-606 (2015)
[3] Aït-Sahalia, Y.; Fan, J.; Peng, H., “Nonparametric Transition-Based Tests for Diffusions,”, Journal of the American Statistical Association, 104, 1102-1116 (2009) · Zbl 1388.62124
[4] Aït-Sahalia, Y.; Jacod, J., “Estimating the Degree of Activity of Jumps in High Frequency Financial Data,”, Annals of Statistics, 37, 2202-2244 (2009) · Zbl 1173.62060
[5] Aït-Sahalia, Y.; Jacod, J., “Identifying the Successive Blumenthal-Getoor Indices of a Discretely Observed Process,”, Annals of Statistics, 40, 1430-1464 (2012) · Zbl 1297.62051
[6] Aït-Sahalia, Y.; Mykland, P.; Zhang, L., “Ultra High Frequency Volatility Estimation With Dependent Microstructure Noise,”, Journal of Econometrics, 160, 160-175 (2011) · Zbl 1441.62577
[7] Aït-Sahalia, Y.; Xiu, D., “Increased Correlation Among Asset Classes: Are Volatility or Jumps to Blame, or Both?,”, Journal of Econometrics, 194, 205-219 (2016) · Zbl 1443.62326
[8] Aldrich, E. M., and Lee, S. (2016), “Relative Spread and Price Discovery,” Discussion Paper 33, Center for Analytical Finance, University of California, Santa Cruz.
[9] Andrews, D. W.; Shi, X., “Inference Based on Conditional Moment Inequalities,”, Econometrica, 81, 609-666 (2013) · Zbl 1274.62311
[10] Arcones, M. A.; Giné, E., “On the Bootstrap of U and V Statistics,”, Annals of Statistics, 20, 655-674 (1992) · Zbl 0760.62018
[11] Bajgrowicz, P.; Scaillet, O.; Treccani, A., “Jumps in High-Frequency Data: Spurious Detections, Dynamics and News,”, Management Science, 62, 2198-2217 (2016)
[12] Barndorff-Nielsen, O. E.; Hansen, P. H.; Lunde, A.; Shephard, N., “Designing Realized Kernels to Measure the Ex-post Variation of Equity Prices in the Presence of Noise,”, Econometrica, 76, 1481-1536 (2008) · Zbl 1153.91416
[13] Barndorff-Nielsen, O. E.; Shephard, N., “Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation,”, Journal of Financial Econometrics, 4, 1-30 (2006)
[14] Barndorff-Nielsen, O. E.; Shephard, N.; Winkel, M., “Limit Theorems for Multipower Variation in the Presence of Jumps,”, Stochastic Processes and Their Applications, 116, 796-806 (2006) · Zbl 1096.60022
[15] Bates, D. S., “Post-’87 Crash Fears in the S&P 500 Futures Option Market,”, Journal of Econometrics, 94, 181-238 (2000) · Zbl 0942.62118
[16] Ben-David, I.; Franzoni, F.; Moussawi, R., “Exchange Traded Funds (ETFs),”, Annual Review of Financial Economics, 9, 169-189 (2017)
[17] Bollerslev, T.; Law, T. H.; Tauchen, G., “Risk, Jump and Diversification,”, Journal of Econometrics, 144, 234-256 (2008) · Zbl 1418.62374
[18] Boswijk, H. P.; Laeven, R. J. A.; Yang, X., “Testing for Self-Excitation in Jumps,”, Journal of Econometrics, 203, 256-266 (2018) · Zbl 1386.62025
[19] Boudt, K.; Zhang, J., “Jump Robust Two-Time Scale Covariance Estimation and Realized Volatility Budgets,”, Quantitative Finance, 15, 1041-1054 (2015) · Zbl 1398.62283
[20] Bowsher, C. G., “Modelling Security Market Events in Continuous Time: Intensity Based, Multivariate Point Process Models,”, Journal of Econometrics, 141, 876-912 (2007) · Zbl 1418.62375
[21] Bretagnolle, J., “Lois limites du bootstrap de certaines fonctionnelles,”, Annales de l’Institut Henri Poincaré, Section B, Probabilités et Statistiques, 19, 281-296 (1983) · Zbl 0535.62046
[22] Chakravarty, S.; Gulen, H.; Mayhew, S., “Informed Trading in Stock and Option Markets,”, Journal of Finance, 59, 1235-1257 (2004)
[23] Chen, S. N.; Dahl, G. B.; Khan, S., “Nonparametric Estimation and Identification of a Censored Location-Scale Regression Model,”, Journal of the American Statistical Association, 100, 212-221 (2005) · Zbl 1117.62309
[24] Cont, R.; Mancini, C., “Nonparametric Tests for Pathwise Properties of Semimartingales,”, Bernoulli, 17, 781-813 (2011) · Zbl 1345.62074
[25] Cont, R.; Tankov, P., Financial Modelling With Jump Processes (2004), Boca Raton, FL: Chapman and Hall, Boca Raton, FL · Zbl 1052.91043
[26] Corradi, V.; Distaso, W.; Fernandes, M., “International Market Links and Volatility Transmission,”, Journal of Econometrics, 170, 117-141 (2012) · Zbl 1443.62342
[27] Corradi, V.; Distaso, W.; Swanson, N. R., “Predictive Inference for Integrated Volatility,”, Journal of the American Statistical Association, 106, 1496-1512 (2011) · Zbl 1233.62149
[28] Cox, J. C.; Ingersoll, J. E.; Ross, S. A., “A Theory of the Term Structure of Interest Rates,”, Econometrica, 53, 385-407 (1985) · Zbl 1274.91447
[29] Das, S. R.; Uppal, R., “Systemic Risk and International Portfolio Choice,”, Journal of Finance, 59, 2809-2834 (2004)
[30] Duffie, D.; Pan, J.; Singleton, K., “Transform Analysis and Asset Pricing for Affine Jump Diffusion,”, Econometrica, 68, 1343-1376 (2000) · Zbl 1055.91524
[31] Dungey, M., Erdemlioglub, D., Mateia, M., and Yang, X. (2017), “Testing for Mutually Exciting Jumps and Financial Flights in High Frequency Data,” Working Paper, University of Tasmania, IESEG School of Management and Rutgers University.
[32] Easley, D.; O’Hara, M.; Srinivas, P. S., and Stock Prices: Evidence on Where Informed Traders Trade,”, Journal of Finance, 53, 431-465 (1998)
[33] Fleming, J.; Ostdiek, B.; Whaley, R. E., “Trading Costs and the Relative Rates of Price Discovery in Stock, Futures, and Option Markets,”, Journal of Futures Markets, 16, 353-387 (1996)
[34] Hansen, P.; Lunde, A., “Realized Variance and Market Microstructure Noise,”, Journal of Business and Economic Statistics, 24, 127-218 (2006)
[35] Hasbrouck, J., “Intraday Price Formation in U.S. Equity Index Markets,”, Journal of Finance, 58, 2375-2399 (2003)
[36] Hautsch, N.; Podolskij, M., “Pre-averaging Based Estimation of Quadratic Variation in the Presence of Noise and Jumps: Theory, Implementation, and Empirical Evidence,”, Journal of Business and Economic Statistics, 31, 165-183 (2013)
[37] Huang, X.; Tauchen, G., “The Relative Contribution of Jumps to Total Price Variance,”, Journal of Financial Econometrics, 3, 456-499 (2005)
[38] Jacod, J.; Li, Y.; Mykland, P. A.; Podolskij, M.; Vetter, M., “Microstructure Noise in the Continuous Time Case: The Pre-averaging Approach,”, Stochastic Processes and Their Application, 119, 2249-2276 (2009) · Zbl 1166.62078
[39] Jacod, J.; Podolskij, M.; Vetter, M., “Limit Theorems for Moving Averages of Discretized Processes Plus Noise,”, Annals of Statistics, 38, 1478-1545 (2010) · Zbl 1196.60033
[40] Jacod, J.; Todorov, V., “Testing for Common Arrival of Jumps in Discretely-Observed Multidimensional Processes,”, Annals of Statistics, 37, 1792-1838 (2009) · Zbl 1168.62075
[41] Jacod, J.; Todorov, V., “Do Price and Volatility Jump Together?,”, Annals of Applied Probability, 20, 1425-1469 (2010) · Zbl 1203.62139
[42] Kawaller, I. G.; Koch, P. D.; Kock, T. W., “The Temporal Price Relationship Between S&P 500 Futures and the S&P 500 Index,”, Journal of Finance, 42, 1309-1329 (1987)
[43] Lee, S. S.; Mykland, P. A., “Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics,”, Review of Financial Studies, 21, 2535-2563 (2008)
[44] Li, J.; Patton, A., “Asymptotic Inference About Predictive Accuracy Using High Frequency Data,”, Journal of Econometrics, 203, 223-240 (2018) · Zbl 1386.62030
[45] Li, J.; Todorov, V.; Tauchen, G., “Jump Regressions,”, Econometrica, 85, 173-195 (2017) · Zbl 1410.62205
[46] Li, J.; Todorov, V.; Tauchen, G., “Robust Jump Regressions,”, Journal of the American Statistical Association, 112, 332-341 (2017)
[47] Li, J.; Todorov, V.; Tauchen, G.; Chen, R., “Mixed-Scale Jump Regressions With Bootstrap Inference,”, Journal of Econometrics, 201, 417-432 (2017) · Zbl 1377.62198
[48] Li, Q.; Racine, J. S., “Nonparametric Estimation of Conditional CDF and Quantile Functions With Mixed Categorical and Continuous Data,”, Journal of Business and Economic Statistics, 26, 423-434 (2008)
[49] Maehu, J. M.; McCurdy, T. H., “News Arrival, Jumps Dynamics and Volatility Components for Individual Stock Return,”, Journal of Finance, 59, 755-793 (2004)
[50] Mancini, C.; Gobbi, F., “Identifying the Brownian Covariation From the Co-jumps Given Discrete Observations,”, Econometric Theory, 28, 249-273 (2012) · Zbl 1298.91167
[51] Podolskij, M.; Vetter, M., “Bipower-Type Estimation in a Noisy Diffusion Setting,”, Stochastic Processes and Their Applications, 119, 2803-2831 (2009) · Zbl 1172.62039
[52] Politis, D. N.; Romano, J. P.; Wolf, M., Subsampling (1999), New York: Springer, New York
[53] Santa-Clara, P.; Yan, S., “Crashes, Volatility, and the Equity Premium: Lessons From S&P 500 Options,”, Review of Economics and Statistics, 92, 435-451 (2010)
[54] Stephan, J. A.; Whaley, R. E., “Intraday Price Change and Trading Volume Relations in the Stock and Stock Option Markets,”, Journal of Finance, 45, 191-220 (1990)
[55] Stoll, H. R.; Whaley, R. E., “The Dynamics of Stock Index and Stock Index Futures Returns,”, Journal of Financial and Quantitative Analysis, 25, 441-468 (1990)
[56] Todorov, V.; Tauchen, G., “Volatility Jumps,”, Journal of Business and Economic Statistics, 29, 356-371 (2011) · Zbl 1219.91156
[57] Wallace, D., Kalev, P. S., and Lian, G. (2014), “The Evolution of Price Discovery in US Equity and Derivatives Markets,” Working Paper, University of South Australia.
[58] Wermers, R., and Xue, J. (2015), “Intraday ETF Trading and the Volatility of the Underlying,” Working Paper, University of Maryland (sponsored by Lyxor Asset Management).
[59] Yang, J., “Do Futures Lead Price Discovery in Electronic Foreign Exchange Markets, Journal of Futures Markets, 29, 137-156 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.