×

Some first inferential tools for spatial regression with differential regularization. (English) Zbl 07482237

Summary: Spatial regression with differential regularization is an innovative approach at the crossroad between functional data analysis and spatial data analysis. These models have been shown to be numerically efficient and capable to handle complex applied problems. On the other hand, their theoretical properties are still largely unexplored. Here we consider the discrete estimators in spatial regression models with differential regularization, obtained after numerical discretization, using an expansion on a finite element basis. We study the consistency and the asymptotic normality of these discrete estimators. We also propose a nonparametric test procedure for the linear part of the models, based on random sign-flipping of the score components. The test exploits an appropriate decomposition of the smoothing matrix, in order to reduce the effect of the spatial dependence, without any parametric assumption on the form of the correlation structure. The proposed test is shown to be superior to parametric alternatives.

MSC:

62Hxx Multivariate analysis
62G09 Nonparametric statistical resampling methods
62G05 Nonparametric estimation
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Aneiros, G.; Cao, R.; Fraiman, R.; Genest, C.; Vieu, P., Recent advances in functional data analysis and high-dimensional statistics, J. Multivariate Anal., 170, 3-9 (2019) · Zbl 1415.62043
[2] Arnone, E.; Azzimonti, L.; Nobile, F.; Sangalli, L. M., Modeling spatially dependent functional data via regression with differential regularization, J. Multivariate Anal., 170, 275-295 (2019) · Zbl 1415.62016
[3] Arnone, E.; Kneip, A.; Nobile, F.; Sangalli, L. M., Some first results on the consistency of Spatial Regression with Partial Differential Equation regularization, Statist. Sinica (2021)
[4] Azzimonti, L.; Nobile, F.; Sangalli, L. M.; Secchi, P., Mixed finite elements for spatial regression with PDE penalization, SIAM/ASA J. Uncertain. Quantif., 2, 1, 305-335 (2014) · Zbl 1306.65275
[5] Azzimonti, L.; Sangalli, L. M.; Secchi, P.; Domanin, M.; Nobile, F., Blood flow velocity field estimation via spatial regression with PDE penalization, J. Amer. Statist. Assoc., 110, 511, 1057-1071 (2015) · Zbl 1373.62534
[6] Bernardi, M. S.; Carey, M.; Ramsay, J. O.; Sangalli, L. M., Modeling spatial anisotropy via regression with partial differential regularization, J. Multivariate Anal., 167, 15-30 (2018) · Zbl 1403.62056
[7] Bernardi, M. S.; Sangalli, L. M.; Mazza, G.; Ramsay, J. O., A penalized regression model for spatial functional data with application to the analysis of the production of waste in Venice province, Stoch. Environ. Res. Risk Assess., 31, 1, 23-38 (2017)
[8] Cressie, N. A.C., (Statistics for Spatial Data. Statistics for Spatial Data, Wiley Classics Library (2015), John Wiley & Sons, Inc., New York), xx+900, Paperback edition of the 1993 edition [ MR1239641] · Zbl 1347.62005
[9] Cressie, N.; Wikle, C. K., (Statistics for Spatio-Temporal Data. Statistics for Spatio-Temporal Data, Wiley Series in Probability and Statistics (2011), John Wiley & Sons, Inc., Hoboken, NJ), xxii+588 · Zbl 1273.62017
[10] Diggle, P. J.; Ribeiro, P. J., (Model-Based Geostatistics. Model-Based Geostatistics, Springer Series in Statistics (2007), Springer, New York), xiv+228 · Zbl 1132.86002
[11] Dubois, G.; Malczewski, J.; De Cort, M., Mapping Radioactivity in the Environment: Spatial Interpolation Comparison 97 (2003), Office for Official Publications of the European Communities
[12] Ettinger, B.; Perotto, S.; Sangalli, L. M., Spatial regression models over two-dimensional manifolds, Biometrika, 103, 1, 71-88 (2016) · Zbl 1452.62997
[13] Ferraty, F.; Vieu, P., (Nonparametric Functional Data Analysis. Nonparametric Functional Data Analysis, Springer Series in Statistics (2006), Springer, New York), xx+258 · Zbl 1119.62046
[14] Freedman, D. A., On the so-called “ Huber sandwich estimator” and “robust standard errors”, Amer. Statist., 60, 4, 299-302 (2006)
[15] Garthwaite, P. H., Confidence intervals from randomization tests, Biometrics, 1387-1393 (1996) · Zbl 0925.62122
[16] Goia, A.; Vieu, P., An introduction to recent advances in high/infinite dimensional statistics, J. Multivariate Anal., 146, 1-6 (2016) · Zbl 1384.00073
[17] Gray, R. J., Spline-based tests in survival analysis, Biometrics, 640-652 (1994) · Zbl 0825.62781
[18] Härdle, W.; Liang, H.; Gao, J., Partially Linear Models, x+203 (2000), Physica-Verlag: Physica-Verlag Heidelberg · Zbl 0968.62006
[19] Heckman, N. E., Spline smoothing in a partly linear model, J. R. Stat. Soc. Ser. B Stat. Methodol., 48, 2, 244-248 (1986) · Zbl 0623.62030
[20] Hemerik, J.; Goeman, J. J., False discovery proportion estimation by permutations: confidence for significance analysis of microarrays, J. R. Stat. Soc. Ser. B Stat. Methodol., 80, 1, 137-155 (2018) · Zbl 1380.62232
[21] Hemerik, J.; Goeman, J. J.; Finos, L., Robust testing in generalized linear models by sign flipping score contributions, J. R. Stat. Soc. Ser. B. Stat. Methodol., 82, 3, 841-864 (2020)
[22] Hemerik, J.; Solari, A.; Goeman, J. J., Permutation-based simultaneous confidence bounds for the false discovery proportion, Biometrika, 106, 3, 635-649 (2019) · Zbl 1464.62276
[23] Hjelle, Ø.; Dæhlen, M., Triangulations and Applications (2006), Springer, Berlin · Zbl 1104.52006
[24] Huh, M.-H.; Jhun, M., Random permutation testing in multiple linear regression, Comm. Statist. Theory Methods, 30, 10, 2023-2032 (2001) · Zbl 1009.62547
[25] Kherad-Pajouh, S.; Renaud, O., An exact permutation method for testing any effect in balanced and unbalanced fixed effect ANOVA, Comput. Statist. Data Anal., 54, 7, 1881-1893 (2010) · Zbl 1284.62279
[26] Kokoszka, P.; Reimherr, M., (Introduction To Functional Data Analysis. Introduction To Functional Data Analysis, Chapman & Hall/CRC Texts in Statistical Science (2017), Chapman & Hall/CRC, Boca Raton)
[27] Lila, E.; Aston, J. A.; Sangalli, L. M., Smooth principal component analysis over two-dimensional manifolds with an application to neuroimaging, Ann. Appl. Stat., 10, 4, 1854-1879 (2016) · Zbl 1454.62187
[28] Lila, E.; Sangalli, L. M.; Arnone, E.; Ramsay, J.; Formaggia, L., fdaPDE: Functional data analysis and partial differential equations; statistical analysis of functional and spatial data, based on regression with partial differential regularizations (2020), R package version 1.0-9
[29] Maas, C. J.; Hox, J. J., Robustness issues in multilevel regression analysis, Stat. Neerl., 58, 2, 127-137 (2004) · Zbl 1050.62036
[30] Mateu, J.; Romano, E., Advances in spatial functional statistics, Stoch. Environ. Res. Risk Assess., 31, 1, 1-6 (2017)
[31] Mateu Mahiques, J.; Giraldo, R., Geostatistical Functional Data Analysis (2021), Wiley, New York
[32] Pesarin, F., Multivariate Permutation Tests: With Applications in Biostatistics, Vol. 240 (2001), Wiley Chichester
[33] Pesarin, F.; Salmaso, L., Permutation Tests for Complex Data: Theory, Applications and Software (2010), John Wiley & Sons, New York
[34] Ramsay, J. O.; Silverman, B. W., (Functional Data Analysis. Functional Data Analysis, Springer Series in Statistics (2005), Springer, New York), xx+426 · Zbl 1079.62006
[35] Ruppert, D.; Wand, M. P.; Carroll, R. J., Semiparametric Regression (2003), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1038.62042
[36] Ruppert, D.; Wand, M. P.; Carroll, R. J., Semiparametric regression during 2003-2007, Electron. J. Stat., 3 (2009) · Zbl 1326.62094
[37] Sangalli, L. M., Spatial regression with partial differential equation regularization, Internat. Statist. Rev. (2021)
[38] Sangalli, L. M.; Ramsay, J. O.; Ramsay, T. O., Spatial spline regression models, J. R. Stat. Soc. Ser. B Stat. Methodol., 75, 4, 681-703 (2013) · Zbl 1411.62134
[39] Schervish, M. J., Theory of Statistics (2012), Springer Science & Business Media, New York
[40] Schlather, M.; Malinowski, A.; Menck, P. J.; Oesting, M.; Strokorb, K., Analysis, simulation and prediction of multivariate random fields with package RandomFields, J. Stat. Softw., 63, 8, 1-25 (2015)
[41] Solari, A.; Finos, L.; Goeman, J. J., Rotation-based multiple testing in the multivariate linear model, Biometrics, 70, 4, 954-961 (2014) · Zbl 1393.62100
[42] Wand, M.; Ormerod, J., On semiparametric regression with O’Sullivan penalized splines, Aust. N. Z. J. Stat., 50, 2, 179-198 (2008) · Zbl 1146.62030
[43] Westfall, P. H.; Young, S. S., Resampling-Based Multiple Testing: Examples and Methods for P-Value Adjustment, Vol. 279 (1993), John Wiley & Sons, New York
[44] Wilhelm, M.; Sangalli, L. M., Generalized spatial regression with differential regularization, J. Stat. Comput. Simul., 86, 13, 2497-2518 (2016) · Zbl 07184747
[45] Winkler, A. M.; Ridgway, G. R.; Webster, M. A.; Smith, S. M.; Nichols, T. E., Permutation inference for the general linear model, Neuroimage, 92, 381-397 (2014)
[46] Wood, S. N., Thin plate regression splines, J. R. Stat. Soc. Ser. B Stat. Methodol., 65, 1, 95-114 (2003) · Zbl 1063.62059
[47] Wood, S. N.; Bravington, M. V.; Hedley, S. L., Soap film smoothing, J. R. Stat. Soc. Ser. B Stat. Methodol., 70, 5, 931-955 (2008) · Zbl 1411.65021
[48] Yu, Y.; Ruppert, D., Penalized spline estimation for partially linear single-index models, J. Amer. Statist. Assoc., 97, 460, 1042-1054 (2002) · Zbl 1045.62035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.