×

A slow-to-start traffic model related to a M/M/1 queue. (English) Zbl 1456.90054

Summary: We consider a system of ordered cars moving in \(\mathbb{R}\) from right to left. Each car is represented by a point in \(\mathbb{R} \); two or more cars can occupy the same point but cannot overpass. Cars have two possible velocities: either 0 or 1. An unblocked car needs an exponential random time of mean 1 to pass from speed 0 to speed 1 (slow-to-start). Car \(i\), say, travels at speed 1 until it (possibly) hits the stopped car \(i-1\) to its left. After the departure of car \(i-1\), car \(i\) waits an exponential random time to change its speed to 1, travels at this speed until it hits again stopped car \(i-1\) and so on. Initially cars are distributed in \(\mathbb{R}\) according to a Poisson process of parameter \({\lambda}<1\). We show that every car will be stopped only a finite number of times and that the final relative car positions are again a Poisson process with parameter \({\lambda}\). To do that, we relate the trajectories of the cars to an M/M/1 stationary queue as follows. Space in the traffic model is time for the queue. The initial positions of the cars coincide with the arrival process of the queue and the final relative car positions match the departure process of the queue.

MSC:

90B22 Queues and service in operations research
60K30 Applications of queueing theory (congestion, allocation, storage, traffic, etc.)
60K25 Queueing theory (aspects of probability theory)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Baccelli F and Brémaud P 1994 Element of Queueing Theory 1st edn (Berlin: Springer) · Zbl 0801.60081
[2] Barlovic R, Santen L, Schadschneider A and Schreckenberg M 1998 Metastable states in cellular automata for traffic flow Eur. Phys. J. B 5 793 · doi:10.1007/s100510050504
[3] Belitsky V and Ferrari P 1995 Ballistic annihilation and deterministic surface growth J. Stat. Phys.80 517 · Zbl 1081.60553 · doi:10.1007/BF02178546
[4] Belitsky V and Ferrari P 2005 Invariant measures and convergence for cellular automaton 184 and related processes J. Stat. Phys.118 589 · Zbl 1126.37301 · doi:10.1007/s10955-004-8822-4
[5] Belitsky V, Krug J, Neves E and Schütz G 2001 A cellular automaton model for two-lane-traffic J. Stat. Phys.103 945 · Zbl 1126.82322 · doi:10.1023/A:1010361022379
[6] Blank M 2003 Ergodic properties of a simple deterministic traffic flow model J. Stat. Phys.111 903 · Zbl 1091.37025 · doi:10.1023/A:1022806500731
[7] Blank M 2004 Hysteresis phenomenon in deterministic traffic flow Preprint math.DS/0408240
[8] Boccara N and Fuks H 2000 Critical behaviour of a cellular automaton highway traffic model J. Phys. A: Math. Gen.33 3407 [cond-mat/9911039] · Zbl 0948.82030
[9] Chowdhury D, Santen L and Schadschneider A 2000 Statistical Physics of vehicular traffic and some related systems Phys. Rep.329 199 · doi:10.1016/S0370-1573(99)00117-9
[10] Fuks H 1999 Exact result for deterministic cellular automaton traffic models Phys. Rev. E 60 197 · doi:10.1103/PhysRevE.60.197
[11] Fuks H and Boccara N 2001 Convergence to equilibrium in a class of interacting particle systems evolving in discrete time Phys. Rev. E 64 016117 · doi:10.1103/PhysRevE.64.016117
[12] Gray L and Griffeath D 2001 The ergodic theory of traffic jams J. Stat. Phys.105 (3/4) · Zbl 1048.90066 · doi:10.1023/A:1012202706850
[13] Greenberg H 1959 An analysis of traffic flow Oper. Res.7 79 · Zbl 1414.90087 · doi:10.1287/opre.7.1.79
[14] Helbing D 2001 Traffic and related self-driven many-particle systems Rev. Mod. Phys.73 1067 · doi:10.1103/RevModPhys.73.1067
[15] Krug J and Spohn H 1988 Universality classes for deterministic surface growth Phys. Rev. A 38 4271 · doi:10.1103/PhysRevA.38.4271
[16] Loynes R 1962 The stability of the queue with no independent interarrival and service time Proc. Camb. Phil. Soc.58 497 · Zbl 0203.22303 · doi:10.1017/S0305004100036781
[17] Nagel K and Schreckenberg M 1992 A cellular automaton model for freeway traffic J. PhysiqueI2 2221 · doi:10.1051/jp1:1992277
[18] Prabhu N 1998 Stochastic Storage Processes: Queues, Insurance Risk, Dams, and Data Cominication (Berlin: Springer) · doi:10.1007/978-1-4612-1742-8
[19] Schadschneider A and Schreckenberg M 1997 Traffic flow models with ‘slow-to-stars’ rules Ann. Phys. Lpz.6 541 · Zbl 0888.90062 · doi:10.1002/andp.19975090703
[20] Thorisson H 2000 Coupling, Stationarity and Regeneration (New York: Springer) · Zbl 0949.60007 · doi:10.1007/978-1-4612-1236-2
[21] Yaguchi H 1986 Stationary measures for an exclusion process on-dimensional lattices with infinitely many hopping sites Hiroshima. Math. J16 449 · Zbl 0615.60097 · doi:10.32917/hmj/1206130303
[22] Wolfram S 1994 Cellular Automata and Complexity(Collected Papers) (Reading, MA: Addison-Wesley) · Zbl 0823.68003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.