×

Uncertainty propagation in dynamic sub-structuring by model reduction integrated domain decomposition. (English) Zbl 1442.74251

Summary: This paper addresses computational aspects in dynamic sub-structuring of built-up structures with uncertainty. Component mode synthesis (CMS), which is a model reduction technique, has been integrated within the framework of domain decomposition (DD), so that reduced models of individual sub-systems can be solved with smaller computational cost compared to solving the full (unreduced) system by DD. This is particularly relevant for structural dynamics applications where the overall system physics can be captured by a relatively low number of modes. The theoretical framework of the proposed methodology has been extended for application in stochastic dynamic systems. To limit the number of eigen-value analyses to be performed corresponding to the random realizations of input parameters, a locally refined high dimensional model representation model with stepwise least squares regression is presented. Effectively, a bi-level decomposition is proposed, one in the physical space and the other in the stochastic space. The geometric decomposition in the physical space by the proposed model reduction-based DD reduces the computational cost of a single analysis of the system and the functional decomposition in the stochastic space by the proposed meta-model lowers the number of simulations to be performed on the actual system. The results achieved by solving a finite-element model of an assembled beam structure and a 3D space frame illustrate good performance of the proposed methodology, highlighting its potential for complex problems.

MSC:

74S60 Stochastic and other probabilistic methods applied to problems in solid mechanics
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs

Software:

Gmsh
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Boo, S. H.; Kim, J. H.; Lee, P. S., Towards improving the enhanced Craig-Bampton method, Comput. Struct., 196, 63-75 (2018)
[2] R.R. Craig, Coupling of substructures for dynamic analyses: an overview. in: Proceedings of AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit., 2000, pp. 1573-1584.
[3] Craig, R. R.; Kurdila, A. J., Fundamentals of Structural Dynamics (2006), John Wiley & Sons · Zbl 1118.70001
[4] De Klerk, D.; Rixen, D. J.; Voormeeren, S. N., General framework for dynamic substructuring: History, review, and classification of techniques, AIAA J., 46, 1169-1181 (2008)
[5] Badia, S.; Martin, A.; Nguyen, H., Physics-based balancing domain decomposition by constraints for multi-material problems, J. Sci. Comput., 79, 718-747 (2019) · Zbl 1419.65138
[6] Badia, S.; Martin, A.; Olm, M., Scalable solvers for complex electromagnetics problems, Finite Elem. Anal. Des., 161, 16-31 (2019)
[7] Franceschini, A.; Magri, V.; Mazzucco, G., A robust adaptive algebraic multigrid linear solver for structural mechanics, Comput. Methods Appl. Mech. Engrg., 352, 389-416 (2019) · Zbl 1441.74302
[8] Sarkar, A.; Benabbou, N.; Ghanem, R., Domain decomposition of stochastic PDEs: Theoretical formulations, Internat. J. Numer. Methods Engrg., 77, 689-701 (2009) · Zbl 1156.74385
[9] Subber, W.; Sarkar, A., A domain decomposition method of stochastic PDEs: An iterative solution techniques using a two-level scalable preconditioner, J. Comput. Phys., 257, 298-317 (2014) · Zbl 1349.65685
[10] Subber, W.; Sarkar, A., A parallel time integrator for noisy nonlinear oscillatory systems, J. Comput. Phys., 362, 190-207 (2018) · Zbl 1395.65003
[11] Rixen, D. J., Theoretical relations between domain decomposition and dynamic substructuring, (Lecture Notes in Computer Science (2006)), 342-348
[12] Mace, B.; Worden, K.; Manson, G., Uncertainty in structural dynamics, J. Sound Vib., 288, 423-429 (2005)
[13] Pryse, S. E.; Kundu, A.; Adhikari, S., Projection methods for stochastic dynamic systems: A frequency domain approach, Comput. Methods Appl. Mech. Engrg., 338, 412-439 (2018) · Zbl 1440.74437
[14] Lu, J.; Zhan, Z.; Apley, D. W.; Chen, W., Uncertainty propagation of frequency response functions using a multi-output Gaussian process model, Comput. Struct., 217, 1-17 (2019)
[15] DiazDelaO, F.; Adhikari, S.; Saavedra, D. W.; Flores, E.; Friswell, M., Stochastic structural dynamic analysis using Bayesian emulators, Comput. Struct., 120, 24-32 (2013)
[16] Xia, Z.; Tang, J., Characterization of dynamic response of structures with uncertainty by using Gaussian processes, J. Vib. Acoust., 135, Article 051006 pp. (2013)
[17] Wan, H.-P.; Mao, Z.; Todd, M.; Ren, W.-X., Analytical uncertainty quantification for modal frequencies with structural parameter uncertainty using a Gaussian process metamodel, Eng. Struct., 75 (2014)
[18] Higdon, D.; Gattiker, J.; Williams, B.; Rightley, M., Computer model calibration using high-dimensional output, J. Amer. Statist. Assoc., 103 (2008) · Zbl 1469.62414
[19] Bayarri, M.; Berger, J.; Cafeo, J., Computer model validation with functional output, Ann. Statist., 35, 1874-1906 (2007) · Zbl 1144.62368
[20] Hung, Y.; Joseph, V. R.; Melkote, S., Analysis of computer experiments with functional response, Technometrics, 57, 35-44 (2015)
[21] Sadr, M.; Astaraki, S.; Salehi, S., Improving the neural network method for finite element model updating using homogenous distribution of design points, Arch. Appl. Mech., 77, 795-807 (2007) · Zbl 1161.74495
[22] Jacquelin, E.; Adhikari, S.; Sinou, J.-J.; Friswell, M., Polynomial chaos expansion in structural dynamics: accelerating the convergence of the first two statistical moment sequences, J Sound Vib., 356 (2015)
[23] Yaghoubi, V.; Marelli, S.; Sudret, B.; Abrahamsson, T., Sparse polynomial chaos expansions of frequency response functions using stochastic frequency transformation, Probab. Eng. Mech., 48, 39-58 (2017)
[24] Nieuwenhof, Van den; Coyette, J.-P. B., Modal approaches for the stochastic finite element analysis of structures with material and geometric uncertainties, Comput. Methods Appl. Mech. Engrg., 192, 3705-3729 (2003) · Zbl 1054.74061
[25] Pichler, L.; Pradlwarter, H. J.; Schuëller, G. I., A mode-based meta-model for the frequency response functions of uncertain structural systems, Comput. Struct., 87, 332-341 (2009)
[26] Manan, A.; Cooper, J., Prediction of uncertain frequency response function bounds using polynomial chaos expansion, J. Sound Vib., 329, 3348-3358 (2010)
[27] Chatterjee, T.; Chakraborty, S.; Chowdhury, R., A bi-level approximation tool for the computation of FRFs in stochastic dynamic systems, Mech. Syst. Signal Process., 70-71, 484-505 (2016)
[28] Chatterjee, T.; Chakraborty, S.; Chowdhury, R., A critical review of surrogate assisted robust design optimization, Arch. Comput. Methods Eng., 26, 245-274 (2019)
[29] Hurty, W. C., Dynamic analysis of structural systems using component modes, AIAA J., 3, 678-685 (1965)
[30] Bampton, M.; Craig, R. R.J., Coupling of substructures for dynamic analyses, AIAA J., 6, 1313-1319 (1968) · Zbl 0159.56202
[31] Rixen, D. J., A dual Craig-Bampton method for dynamic substructuring, J. Comput. Appl. Math., 168, 383-391 (2004) · Zbl 1107.70303
[32] Krattiger, D.; Wu, L.; Zacharczuk, M., Interface reduction for Hurty/Craig-Bampton substructured models: Review and improvements, Mech. Syst. Signal Process., 114, 579-603 (2019)
[33] Bjorstad, P.; Smith, B.; Gropp, W., Domain Decomposition, Parallel Multilevel Methods for Elliptic Partial Differential Equations (1996), Cambridge University Press: Cambridge University Press Cambridge, MA · Zbl 0857.65126
[34] Hinke, L.; Dohnal, F.; Mace, B. R., Component mode synthesis as a framework for uncertainty analysis, J. Sound Vib., 324, 161-178 (2009)
[35] Subber, W., Domain Decomposition Methods for Uncertainty Quantification (2012), Department of Civil and Environmental Engineering, Carleton University, (Ph.D. thesis)
[36] Saad, Y., Iterative Methods for Sparse Linear Systems (2003), SIAM: SIAM Philadelphia · Zbl 1002.65042
[37] Toselli, A.; Widlund, O. B., Domain Decomposition Methods - Algorithms and Theory, Series in Computational Mathematics (2004), Springer: Springer New York
[38] Sarsri, D.; Azrar, L., Dynamic analysis of large structures with uncertain parameters based on coupling component mode synthesis and perturbation method, Ain Shams Eng. J., 7, 371-381 (2016)
[39] Nair, P. B.; Keane, A. J., Stochastic reduced basis, AIAA J., 40, 1653-1664 (2002)
[40] Dohnal, F.; Mace, B. R.; Ferguson, N. S., Joint uncertainty propagation in linear structural dynamics using stochastic reduced basis methods, AIAA J., 47, 961-969 (2009)
[41] Sarsri, D.; Azrar, L.; Jebbouri, A.; Hami, A. El, Component mode synthesis and polynomial chaos expansions for stochastic frequency functions of large linear FE models, Comput. Struct., 89, 346-356 (2011)
[42] Soize, C.; Chebli, H., Random uncertainties model in dynamic substructuring using a nonparametric probabilistic model, J. Eng. Mech., 129, 449-457 (2003)
[43] Soize, C., A nonparametric model of random uncertainties for reduced matrix models in structural dynamics, Probabilistic Eng. Mech., 15, 277-294 (2000)
[44] Jensen, H. A.; Araya, V. A.; Muñoz, A. D.; Valdebenito, M. A., A physical domain-based substructuring as a framework for dynamic modeling and reanalysis of systems, Comput. Methods Appl. Mech. Engrg., 326, 656-678 (2017) · Zbl 1439.70033
[45] González, I. V.; Valdebenito, M. A.; Correa, J. I.; H. A., Jensen, Calculation of second order statistics of uncertain linear systems applying reduced order models, Reliab. Eng. Syst. Saf., 190, Article 106514 pp. (2019)
[46] Subber, W.; Sarkar, A., Dual-primal domain decomposition method for uncertainty quantification, Comput. Methods Appl. Mech. Engrg., 266, 112-124 (2013) · Zbl 1286.65167
[47] Desai, A.; Khalil, M.; Pettit, C., Scalable domain decomposition solvers for stochastic PDEs in high performance computing, Comput. Methods Appl. Mech. Engrg., 335, 194-222 (2018) · Zbl 1440.65264
[48] Dubourg, V., Adaptive Surrogate Models for Reliability Analysis and Reliability-Based Design Optimization (2011), Universite Blaise Pascal: Universite Blaise Pascal Clermont-Ferrand, France, (Ph.D. thesis)
[49] Li, G.; Hu, J.; Wang, S. W., Random sampling-high dimensional model representation (RS-HDMR) and orthogonality of its different order component functions, J. Phys. Chem. A, 110, 2474-2485 (2006)
[50] Kersaudy, P.; Sudret, B.; Varsier, N., A new surrogate modeling technique combining Kriging and polynomial chaos expansions - Application to uncertainty analysis in computational dosimetry, J. Comput. Phys., 286, 103-117 (2015) · Zbl 1351.94003
[51] Chatterjee, T.; Chowdhury, R., h-p adaptive model based approximation of moment free sensitivity indices, Comput. Methods Appl. Mech. Engrg., 332, 572-599 (2018) · Zbl 1441.65004
[52] Xiu, D.; Karniadakis, G. E., The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24, 619-644 (2002) · Zbl 1014.65004
[53] Mukhopadhyay, T.; Chakraborty, S.; Dey, S., A critical assessment of Kriging model variants for high-fidelity uncertainty quantification in dynamics of composite shells, Arch. Comput. Methods Eng. (2016) · Zbl 1376.62133
[54] McKay, M. D.; Beckman, R. J.; Conover, W. J., A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21, 239-245 (1979) · Zbl 0415.62011
[55] Chatterjee, T.; Chowdhury, R., Refined sparse Bayesian learning configuration for stochastic response analysis, Probabilistic Eng. Mech., 52, 15-27 (2018)
[56] Geuzaine, C.; Remacle, J., Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities, Internat. J. Numer. Methods Engrg., 79, 1309-1331 (2009) · Zbl 1176.74181
[57] Perdahcioǧlu, D. A.; Geijselaers, H. J.M.; Ellenbroek, M. H.M.; De Boer, A., Dynamic substructuring and reanalysis methods in a surrogate-based design optimization environment, Struct. Multidiscip. Optim., 45, 129-138 (2012) · Zbl 1274.74216
[58] Jensen, H. A.; Muñoz, A.; Papadimitriou, C.; Vergara, C., An enhanced substructure coupling technique for dynamic re-analyses: Application to simulation-based problems, Comput. Methods Appl. Mech. Engrg., 307, 215-234 (2016) · Zbl 1436.74067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.