Furth, Dave; Sierksma, Gerard The rank and eigenvalues of main diagonal perturbed matrices. (English) Zbl 0682.15007 Linear Multilinear Algebra 25, No. 3, 191-204 (1989). An \(n\times n\) matrix T is in the class \(M_ k\) if T can be written as the sum of a diagonal matrix and a matrix of rank k. Matrices of the class \(M_ 1\), on which this paper concentrates in respect of the location of their eigenvalues, occur in the economic theory of (homogeneous) oligopoly. A general result states that \(M_{n-1}=M_ n\), but for \(k=0,...,n-2\), \(M_ k\) is contained strictly in \(M_{k+1}\). Reviewer: Eugene Seneta (Sydney) Cited in 4 Documents MSC: 15A18 Eigenvalues, singular values, and eigenvectors 15A03 Vector spaces, linear dependence, rank, lineability 91B28 Finance etc. (MSC2000) 91A40 Other game-theoretic models Keywords:rank; eigenvalues; main diagonal perturbed matrices; input-output Leontief model; oligopoly-like games PDF BibTeX XML Cite \textit{D. Furth} and \textit{G. Sierksma}, Linear Multilinear Algebra 25, No. 3, 191--204 (1989; Zbl 0682.15007) Full Text: DOI References: [1] DOI: 10.1016/0024-3795(87)90207-2 · Zbl 0607.15002 · doi:10.1016/0024-3795(87)90207-2 [2] DOI: 10.1016/0022-0531(86)90072-4 · Zbl 0627.90011 · doi:10.1016/0022-0531(86)90072-4 [3] Golub G.H., Matrix Computations (1984) [4] DOI: 10.1137/1015032 · Zbl 0254.65027 · doi:10.1137/1015032 [5] Horn R.A., Matrix Analysis (1985) · Zbl 0576.15001 [6] DOI: 10.2307/2296349 · Zbl 0181.23108 · doi:10.2307/2296349 [7] Murata Y., Mathematics for Stability and Optimization of Economic Systems (1977) [8] DOI: 10.2307/2296733 · doi:10.2307/2296733 [9] DOI: 10.1016/0022-0531(80)90028-9 · Zbl 0453.90018 · doi:10.1016/0022-0531(80)90028-9 [10] Seneta E., Non-Negative Matrices and Markov Chains (1981) · Zbl 1099.60004 · doi:10.1007/0-387-32792-4 [11] DOI: 10.1016/0024-3795(79)90178-2 · Zbl 0409.90027 · doi:10.1016/0024-3795(79)90178-2 [12] Sierksma G., Compositio Mathematica 59 pp 73– (1986) [13] DOI: 10.1016/0024-3795(87)90023-1 · doi:10.1016/0024-3795(87)90023-1 [14] DOI: 10.2307/1055114 · doi:10.2307/1055114 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.