×

On the modelling of biological patterns with mechanochemical models: insights from analysis and computation. (English) Zbl 1185.92011

Summary: The diversity of biological form is generated by a relatively small number of underlying mechanisms. Consequently, mathematical and computational modelling can, and does, provide insight into how cellular level interactions ultimately give rise to higher level structure. Given cells respond to mechanical stimuli, it is therefore important to consider the effects of these responses within biological self-organisation models. We consider the self-organisation properties of a mechanochemical model previously developed by three of the authors in Acta Biomater. 4, 613–621 (2008), which is capable of reproducing the behaviour of a population of cells cultured on an elastic substrate in response to a variety of stimuli.
In particular, we examine the conditions under which stable spatial patterns can emerge with this model, focusing on the influence of mechanical stimuli and the interplay of non-local phenomena. To this end, we have performed a linear stability analysis and numerical simulations based on a mixed finite element formulation, which have allowed us to study the dynamical behaviour of the system in terms of the qualitative shape of the dispersion relation. We show that the consideration of mechanotaxis, namely changes in migration speeds and directions in response to mechanical stimuli alters the conditions for pattern formation in a singular manner. Furthermore without non-local effects, responses to mechanical stimuli are observed to result in dispersion relations with positive growth rates at arbitrarily large wavenumbers, in turn yielding heterogeneity at the cellular level in model predictions. This highlights the sensitivity and necessity of non-local effects in mechanically influenced biological pattern formation models and the ultimate failure of the continuum approximation in their absence.

MSC:

92C15 Developmental biology, pattern formation
92C37 Cell biology
35Q92 PDEs in connection with biology, chemistry and other natural sciences
65C20 Probabilistic models, generic numerical methods in probability and statistics
92C05 Biophysics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

Software:

ABAQUS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alastrué, V., Rodríguez, J.F., Calvo, B., Doblaré, M., 2007. Structural damage models for fibrous biological soft tissues. Int. J. Solids Struct. 44, 5894–5911. · Zbl 1142.74041 · doi:10.1016/j.ijsolstr.2007.02.004
[2] Barocas, V.H., Moon, A.G., Tranquillo, R.T., 1995. The fibroblast-populated collagen microshpere assay of cell traction force–Part 2: Measurement of the cell traction parameter. J. Biomech. Eng. 117, 161–170. · doi:10.1115/1.2795998
[3] Barrett, J.W., Blowey, J.F., Garcke, H., 1999. Finite element approximation of the Cahn–Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37, 286–318. · Zbl 0947.65109 · doi:10.1137/S0036142997331669
[4] Bischofs, I.B., Schwarz, U.S., 2003. Cell organization in soft media due to active mechanosensing. Proc. Natl. Acad. Sci. U.S.A. 100, 9274–9279. · doi:10.1073/pnas.1233544100
[5] Collen, A., Koolwijk, P., Kroon, M., van Hinsbergh, V.W.M., 1998. Influence of fibrin structure on the formation and maintenance of capillary-like tubules by human microvascular endothelial cells. Angiogenesis 2, 153–165.
[6] Conway, E.M., Collen, D., Carmeliet, P., 2001. Molecular mechanisms of blood vessel growth. Cardiovasc. Res. 49, 507–521. · doi:10.1016/S0008-6363(00)00281-9
[7] Cross, M.C., Hohenberg, P.C., 1993. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112. · Zbl 1371.37001 · doi:10.1103/RevModPhys.65.851
[8] Cruywagen, G.C., Maini, P.K., Murray, J.D., 1997. Biological pattern formation on two-dimensional spatial domains: a nonlinear bifurcation analysis. SIAM J. Appl. Math. 57, 1485–1509. · Zbl 0892.92003 · doi:10.1137/S0036139996297900
[9] Cullinane, D.M., Salisbury, K.T., Alkhiary, Y., Eisenberg, S., Gerstenfeld, L., Einhorn, T.A., 2003. Effects of the local mechanical environment on vertebrate tissue differentiation during repair: does repair recapitulate development? J. Exp. Biol. 206, 2459–2471. · doi:10.1242/jeb.00453
[10] Dassault Systèmes Simulia Corp., 2006. Abaqus user’s Manual, v. 6.6. Providence, RI, USA.
[11] Davidson, D., 1983a. The mechanism of feather pattern development in the chick. I. The time of determination of feather position. J. Embryol. Exp. Morph. 74, 245–259.
[12] Davidson, D., 1983b. The mechanism of feather pattern development in the chick. II. Control of the sequence of pattern formation. J. Embryol. Exp. Morph. 74, 261–273.
[13] Dickinson, R.B., Tranquillo, R.T., 1993. A stochastic model for adhesion-mediated cell random motility and haptotaxis. J. Math. Biol. 31, 563–600. · Zbl 0811.92003 · doi:10.1007/BF00161199
[14] Discher, D.E., Janmey, P., Wang, Y., 2005. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143. · doi:10.1126/science.1116995
[15] Doblaré, M., García-Aznar, J.M., 2005. On the numerical modelling of growth, differentiation and damage in structural living tissues. Arch. Comput. Methods Eng. 11, 1–45.
[16] Engler, A., Bacakova, L., Newman, C., Hategan, A., Griffin, M., Discher, D., 2004. Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86, 617–628. · doi:10.1016/S0006-3495(04)74140-5
[17] Feng, X., Prohl, A., 2003. Analysis of a fully-discrete finite element method for the phase field model and approximation of its sharp interface limits. SIAM J. Numer. Anal. 73, 541–567. · Zbl 1115.76049
[18] Ferrenq, I., Tranqui, L., Vailhe, B., Gumery, P.Y., Tracqui, P., 1997. Modelling biological gel contraction by cells: mechanocellular formulation and cell traction force quantification. Acta. Biotheor. 45, 267–293. · doi:10.1023/A:1000684025534
[19] Field, R.J., Burger, M., 1985. Oscillations and Traveling Waves in Chemical Systems. Wiley, New York.
[20] FitzHugh, R., 1961. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466. · doi:10.1016/S0006-3495(61)86902-6
[21] Flesselles, J.M., Simon, A.J., Libchaber, A., 1991. Dynamics of one-dimensional interfaces: an experimentalists’ overview. Adv. Phys. 40, 1–51. · doi:10.1080/00018739100101462
[22] Garikipati, K., Arruda, E.M., Grosh, K., Narayanan, H., Calve, S., 2004. A continuum treatment of growth in biological tissue: the coupling of mass transport and mechanics. J. Mech. Phys. Solids 52, 1595–1625. · Zbl 1159.74381 · doi:10.1016/j.jmps.2004.01.004
[23] Ghosh, K., Pan, Z., Guan, E., Ge, S., Liu, Y., Nakamura, T., Ren, X., Rafailovich, M., Clark, R.A.F., 2007. Cell adaptation to a physiologically relevant ecm mimic with different viscoelastic properties. Biomaterials 28, 671–679. · doi:10.1016/j.biomaterials.2006.09.038
[24] Gierer, A., Meinhardt, H., 1972. A theory of biological pattern formation. Kybernetik 12, 30–39. · Zbl 0297.92007 · doi:10.1007/BF00289234
[25] Glass, L., Hunter, P., 1990. There is a theory of heart. Physica D 43, 1–16. · Zbl 0698.92005 · doi:10.1016/0167-2789(90)90012-E
[26] Hodgkin, A.L., Huxley, A.F., 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (London) 117, 500–544.
[27] Holmes, M.J., Sleeman, B.D., 2000. A mathematical model of tumour angiogenesis incorporating cellular traction and viscoelastic effects. J. Theor. Biol. 202, 95–112. · doi:10.1006/jtbi.1999.1038
[28] Hughes, T.J.R., 2000. The Finite Element Method, 1st edn. Dover, New York. · Zbl 1191.74002
[29] Hunter, P., Pullan, A., Smaill, B., 2003. Modeling total heart function. Annu. Rev. Biomed. Eng. 5, 147–177. · doi:10.1146/annurev.bioeng.5.040202.121537
[30] Khatiwala, C.B., Peyton, S.R., Putnam, A.J., 2006. Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells. Am. J. Physiol. Cell Physiol. 290, 1640–1650. · doi:10.1152/ajpcell.00455.2005
[31] Lim, C.T., Zhou, E.H., Quek, S.T., 2006. Mechanical models for living cells–a review. J. Biomech. 39, 195–216. · doi:10.1016/j.jbiomech.2004.12.008
[32] Lo, C., Wang, H., Dembo, M., Wang, Y., 2000. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152. · doi:10.1016/S0006-3495(00)76279-5
[33] Maini, P.K., Myerscough, M.R., Winters, K.H., Murray, J.D., 1991. Bifurcating spatially heterogeneous solutions in chemotaxis model for biological pattern generation. Bull. Math. Biol. 53, 701–719. · Zbl 0725.92004
[34] Manoussaki, D., 2003. A mechanochemical model of angiogenesis and vasculogenesis. ESAIM: Math. Model. Numer. Anal. 37, 581–599. · Zbl 1080.92012 · doi:10.1051/m2an:2003046
[35] Manoussaki, D., Lubkin, S.R., Vernon, R.B., Murray, J.D., 1996. A mechanical model for the formation of vascular networks in vitro. Acta Biotheor. 44, 271–282. · doi:10.1007/BF00046533
[36] Meinhardt, H., Prusinkiewicz, P., Fowler, D.R., 2003. The Algorithmic Beauty of Sea Shells, 3rd edn. Springer, Berlin.
[37] Mittenthal, J.E., Mazo, R.M., 1983. A model for shape generation by strain and cell-cell adhesion in the epithelium of an arthropod leg segment. J. Theor. Biol. 100, 443–483. · doi:10.1016/0022-5193(83)90441-1
[38] Miura, T., Shiota, K., Morriss-Kay, G., Maini, P.K., 2006. Mixed-mode pattern in doublefoot mutant mouse limb–Turing reaction–diffusion model on a growing domain during limb development. J. Theor. Biol. 240, 562–573. · doi:10.1016/j.jtbi.2005.10.016
[39] Moloney, J.V., Newell, A.C., 1990. Nonlinear optics. Physica D 44, 1–37. · Zbl 0714.35077 · doi:10.1016/0167-2789(90)90045-Q
[40] Moreo, P., García-Aznar, J.M., Doblaré, M., 2008. Modeling mechanosensing and its effect on the migration and proliferation of adherent cells. Acta Biomater. 4, 613–621. · doi:10.1016/j.actbio.2007.10.014
[41] Murray, J.D., 1981a. On pattern formation mechanisms for lepidopteran wing patterns and mammalian coat markings. Philos. Trans. R. Soc. Lond. B 295, 473–496. · doi:10.1098/rstb.1981.0155
[42] Murray, J.D., 1981b. A pre-pattern formation mechanism for animal coat markings. J. Theor. Biol. 88, 143–163. · doi:10.1016/0022-5193(81)90334-9
[43] Murray, J.D., 1989. Mathematical Biology, 1st edn. Springer, Berlin. · Zbl 0682.92001
[44] Murray, J.D., 2003. On the mechanochemical theory of biological pattern formation with application to vasculogenesis. C. R. Biol. 326, 239–252. · doi:10.1016/S1631-0691(03)00065-9
[45] Murray, J.D., Oster, G.F., 1984. Generation of biological pattern and form. IMA J. Math. Appl. Med. Biol. 1, 51–75. · Zbl 0611.92003 · doi:10.1093/imammb/1.1.51
[46] Murray, J.D., Maini, P.K., Tranquillo, R.T., 1988. Mechanochemical models for generating biological pattern and form in development. Phys. Rep. 171, 59–84. · doi:10.1016/0370-1573(88)90003-8
[47] Nagayama, M., Haga, H., Takahashi, M., Saitoh, T., Kawabata, K., 2004. Contribution of cellular contractility to spatial and temporal variations in cellular stiffness. Exp. Cell Res. 300, 396–405. · doi:10.1016/j.yexcr.2004.07.034
[48] Nagumo, J.S., Arimoto, S., Yoshizawa, S., 1962. An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2071. · doi:10.1109/JRPROC.1962.288235
[49] Namy, P., Ohayon, J., Tracqui, P., 2004. Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields. J. Theor. Biol. 202, 103–120. · doi:10.1016/j.jtbi.2003.10.015
[50] Oster, G.F., Murray, J.D., Harris, A.K., 1983. Mechanical aspects of mesenchymal morphogenesis. J. Embryol. Exp. Morph. 78, 83–125. · Zbl 0533.92002
[51] Park, J.Y., Gemmell, C.H., Davies, J.E., 2001. Platelet interactions with titanium: modulation of platelet activity by surface topography. Biomaterials 22, 2671–2682. · doi:10.1016/S0142-9612(01)00009-6
[52] Pavlin, D., Dove, S.B., Zadro, R., Gluhak-Heinrich, J., 2000. Mechanical loading stimulates differentiation of periodontal osteoblasts in a mouse osteoinduction model: effect on type I collagen and alkaline phosphatase genes. Calcif. Tissue Int. 67, 163–172. · doi:10.1007/s00223001105
[53] Pelham, R.J., Wang, Y., 1997. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. U.S.A. 94, 13,661–13,665. · doi:10.1073/pnas.94.25.13661
[54] Peña, E., Calvo, B., Martínez, M.A., Doblaré, M., 2007. An anisotropic visco-hyperelastic model for ligaments at finite strains formulation and computational aspects. Int. J. Solids Struct. 44, 760–778. · Zbl 1176.74043 · doi:10.1016/j.ijsolstr.2006.05.018
[55] Perumpanani, A.J., Byrne, H.M., 1999. Extracellular matrix concentration exerts selection pressure on invasive cells. Eur. J. Cancer 35, 1274–1280. · doi:10.1016/S0959-8049(99)00125-2
[56] Peyton, S.R., Putnam, A.J., 2005. Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J. Cell Physiol. 204, 198–209. · doi:10.1002/jcp.20274
[57] Ramtani, S., 2004. Mechanical modelling of cell/ECM and cell/cell interactions during the contraction of a fibroblast-populated collagen microsphere: theory and model simulation. J. Biomech. 37, 1709–1718. · doi:10.1016/j.jbiomech.2004.01.028
[58] Schäfer, A., Radmacher, M., 2005. Influence of myosin II activity on stiffness of fibroblast cells. Acta Biomater. 1, 273–280. · doi:10.1016/j.actbio.2005.02.004
[59] Schwarz, U.S., Bischofs, I.B., 2005. Physical determinants of cell organization in soft media. Med. Eng. Phys. 27, 763–772. · doi:10.1016/j.medengphy.2005.04.007
[60] Shreiber, D.I., Barocas, V.H., Tranquillo, R.T., 2003. Temporal variations in cell migration and traction during fibroblast-mediated gel compaction. Biophys. J. 84, 4102–4114. · doi:10.1016/S0006-3495(03)75135-2
[61] Stéphanou, A., Meskaoui, G., Vailhé, B., Tracqui, P., 2007. The rigidity of fibrin gels as a contributing factor to the dynamics of in vitro vascular cord formation. Microvas. Res. 73, 182–190. · doi:10.1016/j.mvr.2006.12.002
[62] Turing, A.M., 1952. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72. · Zbl 1403.92034 · doi:10.1098/rstb.1952.0012
[63] Vailhé, B., Vittet, D., Feige, J.J., 2001. In vitro models of vasculogenesis and angiogenesis. Lab. Invest. 81, 439–452.
[64] Wells, G.N., Kuhl, E., Garikipati, K., 2006. A discontinuous Galerkin method for the Cahn–Hilliard equation. J. Comput. Phys. 218, 860–877. · Zbl 1106.65086 · doi:10.1016/j.jcp.2006.03.010
[65] Wolpert, L., 1969. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1–47. · doi:10.1016/S0022-5193(69)80016-0
[66] Yang, L., Dolnik, M., Zhabotinsky, A.M., Epstein, I.R., 2002. Pattern formation arising from interactions between Turing and wave instabilities. J. Chem. Phys. 117, 7259–7265. · doi:10.1063/1.1507110
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.