×

A model for conductive faults with non-matching grids. (English) Zbl 1348.76167

Summary: In this paper, we are interested in modeling single-phase flow in a porous medium with known faults seen as interfaces. We mainly focus on how to handle non-matching grids problems arising from rock displacement along the fault. We describe a model that can be extended to multi-phase flow where faults are treated as interfaces. The model is validated in an academic framework and is then extended to 3D non \(K\)-orthogonal grids, and a realistic case is presented.

MSC:

76S05 Flows in porous media; filtration; seepage
76M12 Finite volume methods applied to problems in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aavatsmark, I.: An introduction to multipoint flux approximations for quadrilateral grids. Comput. Geosci 6, 405–432 (2002) · Zbl 1094.76550 · doi:10.1023/A:1021291114475
[2] Alboin, C., Jaffre, J., Roberts, J., Serres, C.: Domain decomposition for flow in porous media with fractures. In: Lai, C.H., Bjorstad, P.E., Cross, M., Widlund, O.B. (eds.) Domain Decomposition Methods in Sciences and Engineering, pp. 365–373. Domain Decomposition, Bergen (1999)
[3] Alboin, C., Jaffré, J., Roberts, J.E., Wang, X., Serres, C.: Domain decomposition for some transmission problems in flow in porous media. In: Numerical Treatment of Multiphase Flows in Porous Media, vol. 552, pp. 22–34. Springer, Berlin (2000) · Zbl 1010.76050
[4] Angot, P.: A model of fracture for elliptic problems with flux and solution jumps. C. R. Math. 337(6), 425–430 (2003) · Zbl 1113.76455 · doi:10.1016/S1631-073X(03)00300-5
[5] Angot, P., Boyer, F., Hubert, F.: Numerical modelling of flow in fractured porous media. In: Finite Volume for Complex Applications IV, pp. 249–260. Hermes, Paris (2005) · Zbl 1374.76211
[6] Angot, P., Boyer, F., Hubert, F.: Asymptotic and numerical modelling of flows in fractured porous media. Modél. Math. Anal. Numér 43(2), 239–275 (2009) · Zbl 1171.76055 · doi:10.1051/m2an/2008052
[7] Arbogast, T., Cowsar, L.C., Wheeler, M.F., Yotov, I.: Mixed finite element methods on nonmatching multiblock grids. Siam J. Numer. Anal. 37(4), 1295–1315 (2000) · Zbl 1001.65126 · doi:10.1137/S0036142996308447
[8] Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. 7, pp. 713–1020. North-Holland, Amsterdam (2000) · Zbl 0981.65095
[9] Faille, I., Flauraud, E., Nataf, F., Pégaz-Fiornet, S., Schneider, F., Willien, F.: A new fault model in geological basin modelling. application of finite volume scheme and domain decomposition methods. In: Herbin, R., Kröner, D. (eds.) Finite Volume for Complex Applications III: Problems and Perspectives, pp. 543–550. Hermes Penton Science, London (2002) · Zbl 1055.86001
[10] Faille, I., Nataf, F., Saas, L., Willien, F.: Finite volume methods on non-matching grids with arbitrary interface conditions and highly heterogeneous media. In: Kornhuber, R., Hoppe, R., Périaux, J., Pironneau, O., Widlund, O., Xu, J. (eds.) Domain Decomposition Methods in Science and Engineering. Lecture Notes in Computational Science and Engineering, vol. 40 (2004)
[11] Flauraud, E.: Méthodes de décomposition de domaine pour les écoulements en milieux poreux. Ph.D. thesis, Université pierre et marie curie, Paris (2004)
[12] Flauraud, E., Nataf, F., Faille, I., Masson, R.: Domain decomposition for an asymptotic geological fault modeling. C R Mécanique 331(12), 849–855 (2003) · Zbl 1223.86002 · doi:10.1016/j.crme.2003.09.009
[13] Fredman, N., Tveranger, J., Cardozo, N., Braathen, A., Soleng, H., Roe, P., Skorstad, A., Syversveen, A.: Fault facies modeling: technique and approach for 3-d conditioning and modeling of faulted grids. AAPG Bull. 92(11), 1457–1478 (2008) · doi:10.1306/06090807073
[14] Frih, N., Roberts, J.E., Saada, A.: Modeling fractures as interfaces: a model for Forchheimer fractures. Comput. Geosci. 12(1), 91–104 (2008) · Zbl 1138.76062 · doi:10.1007/s10596-007-9062-x
[15] Gilman, J.R., Bowzer, J.L., Rothkopf, B.W.: Application of short-radius horizontal boreholes in the naturally fractured Yates field. SPE Reserv. Eng. 10(1), 10–15 (1995)
[16] Hearn, C.L., Al-Emadi, I. A.A., Worley, P.L.H., Taylor, R.D.: Improved oil recovery in a tight reservoir with conductive faults, ISND Shuaiba, Qatar. In: SPE Annual Technical Conference and Exhibition. San Antonio, Texas, 5–8 October 1997
[17] Karimi-Fard, M., Durlofsky, L.J., Aziz, K.: An efficient discrete-fracture model applicable for general-purpose reservoir simulators. SPE J. 9(2), 227–236 (2004)
[18] Lee, S.H., Jensen, C.L., Lough, M.F.: An efficient finite difference model for flow in a reservoir with multiple length-scale fractures. SPE J. 5(3), 268–275 (2000)
[19] Manzocchi, T., Walsh, J., Nell, P., Yielding, G.: Fault transmissibility multipliers for flow simulation models. Pet. Geosci. 5(1), 53–63 (1999) · doi:10.1144/petgeo.5.1.53
[20] Martin, V., Jaffré, J., Roberts, J.E.: Modeling fractures and barriers as interfaces for flow in porous media. Soc Ind Appl Math J 26(5), 1667–1691 (2005) · Zbl 1083.76058
[21] Ponting, D.K.: Corner point geometry in reservoir simulation. In: 1st European Conference on the Mathematics of Oil Recovery, pp. 45–65. Oxford (1989)
[22] Reinchenberger, V., Jakobs, H., Bastian, P., Helmig, R.: A mixed-dimensional finite volume method for two-phase flow in fractured porous media. In: Advances in Water Resources, vol. 29, pp. 1020–1036. Elsevier Science, Oxford (2005)
[23] Trocchio, J.T.: Investigation of Fateh Mishrif fluid-conductive faults. J. Pet. Technol. 51(8), 1038–1045 (1990)
[24] Yielding, G., Freeman, B., Needham, T.D.: Quantitative fault seal prediction. AAPG Bull. 81(6), 897–917 (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.