×

On large deviations in testing Ornstein-Uhlenbeck-type models. (English) Zbl 1204.62144

Summary: We obtain exact large deviation rates for the log-likelihood ratio in testing models with observed Ornstein-Uhlenbeck processes and get explicit rates of decrease for the error probabilities of Neyman-Pearson, Bayes, and minimax tests. Moreover, we give expressions for the rates of decrease for the error probabilities of Neyman-Pearson tests in models with observed processes solving affine stochastic delay differential equations.

MSC:

62M02 Markov processes: hypothesis testing
60F10 Large deviations
62F05 Asymptotic properties of parametric tests
62F15 Bayesian inference
62C20 Minimax procedures in statistical decision theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bahadur RR (1960). Asymptotic efficiency of tests and estimates. Sankhya 22: 229–252 · Zbl 0109.12503
[2] Bahadur RR (1967). Rates of convergence of estimates and test statistics. Annal Math Stat 38: 303–324 · Zbl 0201.52106 · doi:10.1214/aoms/1177698949
[3] Bahadur RR (1971). Some limit theorems in statistics. SIAM, Philadelphia · Zbl 0257.62015
[4] Bahadur RR, Zabell SL, Gupta JC (1980) Large deviations, tests and estimates. In: Chakravarti IM (ed) Asymptotic theory of statistical tests and estimation. Volume in Honor of Wassily Hoeffding. Academic Press, New York, pp. 33–64
[5] Björk T (1997) Interest rate theory. In: Rungaldier W (ed) Financial mathematics Lecture notes in mathematics 1656 Springer, Berlin · Zbl 0904.90007
[6] Borodin AN and Salminen P (1996). Handbook of Brownian Motion – Facts and Formulae. Birkhäuser, Basel · Zbl 0859.60001
[7] Borovkov AA (1984) Mathematical Statistics. Moscow, Nauka (in Russian); English translation: (1998) Gordon and Breach, Amsterdam
[8] Birgé L (1981). Vitesses maximales de décroissance des erreurs et tests optimaux associés. Zeits Wahrscheinlichkeitstheorie und verwandte Gebiete 55: 261–273 · Zbl 0486.62029 · doi:10.1007/BF00532119
[9] Chernoff H (1952). A measure of asymptotic efficiency for tests of hypothesis based on the sum of observations. Annal Math Stat 23: 493–507 · Zbl 0048.11804 · doi:10.1214/aoms/1177729330
[10] Dacunha-Castelle D and Duflo M (1986). Probability and Statistics I. Springer, New York · Zbl 0586.62003
[11] Dietz HM (1992). A non-Markovian relative of the Ornstein–Uhlenbeck process and some of its local statistical properties. Scand J of Stat 19: 363–379 · Zbl 0770.60056
[12] Gushchin AA and Küchler U (1999). Asymptotic inference for a linear stochastic differential equation with time delay. Bernoulli 5(3): 483–493 · Zbl 0943.60016 · doi:10.2307/3318713
[13] Gushchin AA and Küchler U (2000). On stationary solutions of delay differential equations driven by a Lévy process. Stoch Process Appl 88: 195–211 · Zbl 1045.60057 · doi:10.1016/S0304-4149(99)00126-X
[14] Gushchin AA and Küchler U (2001). Addendum to ’Asymptotic inference for a linear stochastic differential equation with time delay’. Bernoulli 7: 629–632 · Zbl 1008.62080 · doi:10.2307/3318729
[15] Gushchin AA and Küchler U (2003). On parametric statistical models for stationary solutions of affine stochastic delay differential equations. Math Meth Stat 12(1): 31–61
[16] Jacod J and Shiryaev AN (1987). Limit Theorems for Stochastic Processes. Springer, Berlin · Zbl 0635.60021
[17] Küchler U and Kutoyants YA (2000). Delay estimation for some stationary diffusion-type processes. Scand J Stat 27(3): 405–414 · Zbl 0976.62083 · doi:10.1111/1467-9469.00197
[18] Küchler U, Vasil’ev VA (2001) On guaranteed parameter estimation of stochastic differential equations with time delay by noisy observations. Discussion Paper 14 of Sonderforschungsbereich 373, Humboldt University Berlin, 25 pp
[19] Kutoyants YA (2004). Statistical Inference for Ergodic Diffusion Processes. Springer Series in Statistics, New York · Zbl 1038.62073
[20] Kutoyants YA (2005). On delay estimation for stochastic differential equations. Stoch Dynamics 5(2): 333–342 · Zbl 1070.62066 · doi:10.1142/S0219493705001444
[21] Lin’kov YN (1993) Asymptotic Statistical Methods for Stochastic Processes. Naukova Dumka, Kiev (in Russian); English translation: (2001) American Mathematical Society, Providence, R:I
[22] Lin’kov YN (1999). Large deviation theorems for extended random variables and some applications. J Math Sci 93(4): 563–573 · Zbl 0943.60014 · doi:10.1007/BF02365062
[23] Lin’kov YN (2002) Large deviations in testing of models with fractional Brownian motion. University of Helsinki, Preprint, 14 pp
[24] Liptser RS and Shiryaev AN (1977). Statistics of Random Processes I. Springer, Berlin
[25] Putschke U (2000) Affine stochastische Funktionaldifferentialgleichungen und lokal asymptotische Eigenschaften ihrer Parameterschätzungen. Doctoral Dissertation, Humboldt University of Berlin, Institute of Mathematics
[26] Rockafellar RT (1970). Convex Analysis. Princeton University Press, Princeton · Zbl 0193.18401
[27] Szimayer A and Maller R (2004). Testing for mean reversion in processes of Ornstein–Uhlenbeck type. Stat Inf Stoch Process 7(2): 95–113 · Zbl 1056.62090 · doi:10.1023/B:SISP.0000026032.80363.59
[28] Vajda I (1990). Generalization of discrimination-rate theorems of Chernoff and Stein. Cybernetics 26(4): 273–288 · Zbl 0727.62026
[29] Vasiček OA (1977). An equilibrium characterization of the term structure. J Finan Econ 5: 177–188 · Zbl 1372.91113 · doi:10.1016/0304-405X(77)90016-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.