×

Nonstandard finite difference schemes for a fractional-order Brusselator system. (English) Zbl 1380.65136

Summary: In this paper, we discuss numerical methods for fractional order problems. Some nonstandard finite difference schemes are presented and investigated. The application in the simulation of a fractional-order Brusselator system is hence presented. By means of some numerical experiments, we show the effectiveness of the proposed approach.

MSC:

65L12 Finite difference and finite volume methods for ordinary differential equations
34A08 Fractional ordinary differential equations

Software:

FDE12
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kempfle S, Schäfer I, Beyer H: Fractional calculus via functional calculus: theory and applications.Nonlinear Dyn. 2002,29(1-4):99-127. · Zbl 1026.47010 · doi:10.1023/A:1016595107471
[2] Oldham KB, Spanier J: The Fractional Calculus. Academic Press, New York; 1974. · Zbl 0292.26011
[3] Samko SG, Kilbas AA, Marichev OI: Fractional Integrals and Derivatives. Gordon & Breach, Yverdon; 1993. (Theory and applications, edited and with a foreword by S. M. Nikol’skiĭ, translated from the 1987 Russian original, revised by the authors) · Zbl 0818.26003
[4] Miller KS, Ross B: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York; 1993. [A Wiley-Interscience Publication] · Zbl 0789.26002
[5] Podlubny I: Fractional Differential Equations. Academic Press, San Diego; 1999. [Mathematics in Science and Engineering 198] · Zbl 0924.34008
[6] Diethelm K: The Analysis of Fractional Differential Equations. Springer, Berlin; 2010. [Lecture Notes in Mathematics 2004]
[7] Mainardi F: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London; 2010. · Zbl 1210.26004 · doi:10.1142/9781848163300
[8] Baleanu D, Diethelm K, Scalas E, Trujillo JJ: Fractional Calculus. World Scientific, Hackensack; 2012. [Series on Complexity, Nonlinearity and Chaos 3] · Zbl 1248.26011
[9] Butzer, PL; Westphal, U.; Hilfer, R. (ed.), An introduction to fractional calculus, 1-85 (2000), Singapore · Zbl 0987.26005 · doi:10.1142/9789812817747_0001
[10] Caponetto R, Dongola G, Fortuna L, Petráš I: Fractional Order Systems: Modeling and Control Applications. World Scientific, Singapore; 2010. [Series on Nonlinear Science, Series A 72] · Zbl 1207.82058
[11] Kilbas AA, Srivastava HM, Trujillo JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam; 2006. [North-Holland Mathematics Studies 204] · Zbl 1092.45003
[12] Magin R: Fractional Calculus in Bioengineering. Begell House Publishers, Redding; 2006.
[13] Sabatier J, Agrawal O, Machado JT: Advances in Fractional Calculus: Theor. Developments and Appl. in Physics and Engineering. Springer, Berlin; 2007. · Zbl 1116.00014 · doi:10.1007/978-1-4020-6042-7
[14] Diethelm K, Ford NJ, Freed AD: A predictor-corrector approach for the numerical solution of fractional differential equations.Nonlinear Dyn. 2002,29(1-4):3-22. · Zbl 1009.65049 · doi:10.1023/A:1016592219341
[15] Diethelm K, Ford N, Freed A, Luchko Y: Algorithms for the fractional calculus: a selection of numerical methods.Comput. Methods Appl. Mech. Eng. 2005,194(6):743-773. · Zbl 1119.65352 · doi:10.1016/j.cma.2004.06.006
[16] Garrappa R, Popolizio M: On the use of matrix functions for fractional partial differential equations.Math. Comput. Simul. 2011,81(5):1045-1056. · Zbl 1210.65162 · doi:10.1016/j.matcom.2010.10.009
[17] Garrappa R, Popolizio M: On accurate product integration rules for linear fractional differential equations.J. Comput. Appl. Math. 2011,235(5):1085-1097. · Zbl 1206.65176 · doi:10.1016/j.cam.2010.07.008
[18] Lubich C: Discretized fractional calculus.SIAM J. Math. Anal. 1986,17(3):704-719. · Zbl 0624.65015 · doi:10.1137/0517050
[19] Moret I, Novati P: On the convergence of Krylov subspace methods for matrix Mittag-Leffler functions.SIAM J. Numer. Anal. 2011,49(5):2144-2164. · Zbl 1244.65065 · doi:10.1137/080738374
[20] Mickens RE, Smith A: Finite-difference models of ordinary differential equations: influence of denominator functions.J. Franklin Inst. 1990, 327:143-149. · Zbl 0695.93063 · doi:10.1016/0016-0032(90)90062-N
[21] Mickens RE: Nonstandard Finite Difference Models of Differential Equations. World Scientific, River Edge; 1994. · Zbl 0810.65083
[22] Baleanu, D.; Mohammadi, H.; Rezapour, S., Positive solutions of an initial value problem for nonlinear fractional differential equations, No. 2012 (2012) · Zbl 1242.35215
[23] Delavari H, Baleanu D, Sadati J: Stability analysis of Caputo fractional-order nonlinear systems revisited.Nonlinear Dyn. 2012,67(4):2433-2439. · Zbl 1243.93081 · doi:10.1007/s11071-011-0157-5
[24] Deng W, Li C, Lü J: Stability analysis of linear fractional differential system with multiple time delays.Nonlinear Dyn. 2007,48(4):409-416. · Zbl 1185.34115 · doi:10.1007/s11071-006-9094-0
[25] Jarad F, Abdeljawad T, Baleanu D: Stability ofq-fractional non-autonomous systems.Nonlinear Anal., Real World Appl. 2013, 14:780-784. · Zbl 1258.34014 · doi:10.1016/j.nonrwa.2012.08.001
[26] Garrappa R: On some explicit Adams multistep methods for fractional differential equations.J. Comput. Appl. Math. 2009,229(2):392-399. · Zbl 1171.65098 · doi:10.1016/j.cam.2008.04.004
[27] Chen M, Clemence DP: Analysis of and numerical schemes for a mouse population model in hantavirus epidemics.J. Differ. Equ. Appl. 2006,12(9):887-899. · Zbl 1108.92036 · doi:10.1080/10236190600779791
[28] Mickens RE: A nonstandard finite-difference scheme for the Lotka-Volterra system.Appl. Numer. Math. 2003,45(2-3):309-314. · Zbl 1025.65047 · doi:10.1016/S0168-9274(02)00223-4
[29] Mickens RE: Calculation of denominator functions for nonstandard finite difference schemes for differential equations satisfying a positivity condition.Numer. Methods Partial Differ. Equ. 2007,23(3):672-691. · Zbl 1114.65094 · doi:10.1002/num.20198
[30] Roeger LIW: Nonstandard finite-difference schemes for the Lotka-Volterra systems: generalization of Mickens’s method.J. Differ. Equ. Appl. 2006,12(9):937-948. · Zbl 1119.65075 · doi:10.1080/10236190600909380
[31] Roeger LIW: Dynamically consistent discrete Lotka-Volterra competition models derived from nonstandard finite-difference schemes.Discrete Contin. Dyn. Syst., Ser. B 2008,9(2):415-429. · Zbl 1152.65085 · doi:10.3934/dcdsb.2008.9.415
[32] Moaddy K, Momani S, Hashim I: The non-standard finite difference scheme for linear fractional PDEs in fluid mechanics.Comput. Math. Appl. 2011,61(4):1209-1216. · Zbl 1217.65174 · doi:10.1016/j.camwa.2010.12.072
[33] Momani S, Rqayiq AA, Baleanu D: A nonstandard finite difference scheme for two-sided space-fractional partial differential equations.Int. J. Bifurc. Chaos 2012.,22(4): Article ID 1250079 · Zbl 1258.35201
[34] Radwan AG, Moaddy K, Momani S: Stability and non-standard finite difference method of the generalized Chua’s circuit.Comput. Math. Appl. 2011,62(3):961-970. · Zbl 1228.65120 · doi:10.1016/j.camwa.2011.04.047
[35] Galeone L, Garrappa R: On multistep methods for differential equations of fractional order.Mediterr. J. Math. 2006,3(3-4):565-580. · Zbl 1167.65399 · doi:10.1007/s00009-006-0097-3
[36] Wang Y, Li C: Does the fractional Brusselator with efficient dimension less than 1 have a limit cycle?Phys. Lett. A 2007,363(5-6):414-419. · doi:10.1016/j.physleta.2006.11.038
[37] Zhou T, Li C: Synchronization in fractional-order differential systems.Physica D 2005,212(1-2):111-125. · Zbl 1094.34034 · doi:10.1016/j.physd.2005.09.012
[38] Gafiychuk VV, Datsko B: Stability analysis and limit cycle in fractional system with Brusselator nonlinearities.Phys. Lett. A 2008,372(29):4902-4904. · Zbl 1221.34010 · doi:10.1016/j.physleta.2008.05.045
[39] El-Sayed AMA, El-Mesiry AEM, El-Saka HAA: On the fractional-order logistic equation.Appl. Math. Lett. 2007,20(7):817-823. · Zbl 1140.34302 · doi:10.1016/j.aml.2006.08.013
[40] Matignon, D., Stability results for fractional differential equations with applications to control processing, No. 2, 963-968 (1996)
[41] Garrappa, R: Predictor-corrector PECE method for fractional differential equations. MATLAB Central File Exchange [File ID: 32918] (2011)
[42] Garrappa R: On linear stability of predictor-corrector algorithms for fractional differential equations.Int. J. Comput. Math. 2010,87(10):2281-2290. · Zbl 1206.65197 · doi:10.1080/00207160802624331
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.