×

Circadian rhythm and cell population growth. (English) Zbl 1219.35323

Summary: Molecular circadian clocks, that are found in all nucleated cells of mammals, are known to dictate rhythms of approximately 24 h (circa diem) to many physiological processes. This includes metabolism (e.g., temperature, hormonal blood levels) and cell proliferation. It has been observed in tumor-bearing laboratory rodents that a severe disruption of these physiological rhythms results in accelerated tumor growth.The question of accurately representing the control exerted by circadian clocks on healthy and tumor tissue proliferation to explain this phenomenon has given rise to mathematical developments, which we review. The main goal of these previous works was to examine the influence of a periodic control on the cell division cycle in physiologically structured cell populations, comparing the effects of periodic control with no control, and of different periodic controls between them. We state here a general convexity result that may give a theoretical justification to the concept of cancer chronotherapeutics. Our result also leads us to hypothesize that the above mentioned effect of disruption of circadian rhythms on tumor growth enhancement is indirect, that is, this enhancement is likely to result from the weakening of healthy tissue that is at work fighting tumor growth.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
92B25 Biological rhythms and synchronization
35F15 Boundary value problems for linear first-order PDEs
92D25 Population dynamics (general)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Lemmer, B., Discoveries of rhythms in human biological functions: a historical review, Chronobiol Int, 26, 6, 1019-1068 (2009), URL: http://dx.doi.org/10.1080/07420520903237984
[2] Reppert, S. M.; Weaver, D. R., Coordination of circadian timing in mammals, Nature, 418, 6901, 935-941 (2002), URL: http://dx.doi.org/10.1038/nature00965
[3] Hastings, M. H.; Reddy, A. B.; Maywood, E. S., A clockwork web: circadian timing in brain and periphery, in health and disease, Nat. Rev. Neurosci., 4, 8, 649-661 (2003), URL: http://dx.doi.org/10.1038/nrn1177
[4] Bjarnason, G. A.; Jordan, R. C.; Sothern, R. B., Circadian variation in the expression of cell-cycle proteins in human oral epithelium, Am. J. Pathol., 154, 2, 613-622 (1999)
[5] Bjarnason, G. A.; Jordan, R., Rhythms in human gastrointestinal mucosa and skin, Chronobiol. Int., 19, 1, 129-140 (2002)
[6] Fu, L.; Lee, C. C., The circadian clock: pacemaker and tumor suppressor, Nat. Rev. Cancer, 3, 5, 350-361 (2003), URL: http://dx.doi.org/10.1038/nrc1072
[7] Lévi, F.; Schibler, U., Circadian rhythms: mechanisms and therapeutic implications, Annu. Rev. Pharmacol. Toxicol., 47, 593-628 (2007), URL: http://dx.doi.org/10.1146/annurev.pharmtox.47.120505.105208
[8] Filipski, E.; King, V. M.; Li, X. M.; Granda, T. G.; Mormont, M.; Liu, X. H.; Claustrat, B.; Hastings, M. H.; Lévi, F., Host circadian clock as a control point in tumor progression, J. Natl. Cancer. Inst., 94, 9, 690-697 (2002)
[9] Filipski, E.; Delaunay, F.; King, V. M.; Wu, M.-W.; Claustrat, B.; Gréchez-Cassiau, A.; Guettier, C.; Hastings, M. H.; Lévi, F., Effects of chronic jet lag on tumor progression in mice, Cancer. Res., 64, 21, 7879-7885 (2004), URL: http://dx.doi.org/10.1158/0008-5472.CAN-04-0674
[10] Filipski, E.; Innominato, P. F.; Wu, M. W.; Li, X. M.; Iacobelli, S.; Xian, L. J.; Lévi, F., Effects of light and food schedules on liver and tumor molecular clocks in mice, J. Natl. Cancer Inst., 97, 7, 507-517 (2005), URL: http://dx.doi.org/10.1093/jnci/dji083
[11] J. Clairambault, B. Laroche, S. Mischler, B. Perthame, A mathematical model of the cell cycle and its control, Research Report RR-4892, INRIA, Projet BANG, 2003. URL: http://hal.inria.fr/inria-00071690/en/; J. Clairambault, B. Laroche, S. Mischler, B. Perthame, A mathematical model of the cell cycle and its control, Research Report RR-4892, INRIA, Projet BANG, 2003. URL: http://hal.inria.fr/inria-00071690/en/
[12] Clairambault, J.; Michel, P.; Perthame, B., Circadian rhythm and tumour growth, C. R. Acad. Sci., 342, 1, 17-22 (2006) · Zbl 1089.92022
[13] Clairambault, J.; Michel, P.; Perthame, B., A mathematical model of the cell cycle and its circadian control, (Deutsch, I. A.; Brusch, L.; Byrne, H.; de Vries, G.; Herzel, H. P., Mathematical Modeling of Biological Systems, vol. I (2007), Birkhäuser), 247-259
[14] Clairambault, J.; Gaubert, S.; Perthame, B., An inequality for the Perron and Floquet eigenvalues of monotone differential systems and age structured equations, C. R. Math. Acad. Sci. Paris, 345, 10, 549-554 (2007) · Zbl 1141.34326
[15] Bekkal Brikci, F.; Clairambault, J.; Perthame, B., Analysis of a molecular structured population model with possible polynomial growth for the cell division cycle, Math. Comput. Modelling, 47, 7-8, 699-713 (2008) · Zbl 1134.92012
[16] Bekkal Brikci, F.; Clairambault, J.; Ribba, B.; Perthame, B., An age-and-cyclin-structured cell population model for healthy and tumoral tissues, J. Math. Biol., 57, 1, 91-110 (2008) · Zbl 1148.92014
[17] Doumic, M., Analysis of a population model structured by the cells molecular content, Math. Model. Nat. Phenom., 2, 3, 121-152 (2007), URL: http://dx.doi.org/10.1051/mmnp:2007006 · Zbl 1337.92174
[18] Clairambault, J.; Gaubert, S.; Lepoutre, T., Comparison of Perron and Floquet eigenvalues in age structured cell division cycle models, Math. Model. Nat. Phenom., 4, 3, 183-209 (2009), URL: http://dx.doi.org/10.1051/mmnp/20094308 · Zbl 1177.35052
[19] Lévi, F., Circadian chronotherapy for human cancers, Lancet Oncol, 2, 5, 307-315 (2001), URL: http://dx.doi.org/10.1016/S1470-2045(00)00326-0
[20] T. Lepoutre, Analyse et modélisation de phénomènes de croissance et mouvement issus de la biologie, Ph.D. Thesis, Université Pierre-et-Marie-Curie (Paris VI), 2009.; T. Lepoutre, Analyse et modélisation de phénomènes de croissance et mouvement issus de la biologie, Ph.D. Thesis, Université Pierre-et-Marie-Curie (Paris VI), 2009.
[21] Michel, P.; Mischler, S.; Perthame, B., General relative entropy inequality: an illustration on growth models, J. Math. Pures Appl., 84, 9, 1235-1260 (2005) · Zbl 1085.35042
[22] Hanahan, D.; Weinberg, R. A., The hallmarks of cancer, Cell, 100, 1, 57-70 (2000)
[23] Giacchetti, S.; Bjarnason, G.; Genet, D.; Iacobelli, S.; Tampellini, M.; Smaaland, R.; Focan, C.; Coudert, B.; Hamblet, Y.; Canon, J.; Adenis, A.; Lo Re, G.; Carvaho, C.; Schueller, C.; Anciaux, N.; Lentz, M.; Baron, B.; Gorlia, T., L.F. Phase III trial comparing 4-day chronomodulated therapy versus 2-day conventional delivery of fluorouracil, leucovorin, and oxaliplatin as first-line chemotherapy of metastatic colorectal cancer: the european organisation for research and treatment of cancer chronotherapy group, J. Clin. Oncol., 24, 2, 3562-3569 (2006)
[24] Lévi, F.; Innominato, P.; Poncet, A.; Moreau, T.; Iacobelli, S.; Focan, C.; Garufi, C.; Bjarnason, G.; Adam, R.; Giacchetti, S., Meta-analysis of gender effect for first-line chronomodulated 5-fluorouracil-leucovorin-oxaliplatin (chronoFLO) compared with FOLFOX or constant infusion (conventional delivery, CONV) against metastatic colorectal cancer (MCC) in three international controlled phase III randomized trials (RT), J. Clin. Oncol. (ASCO Meeting Abstracts), 27, 4112 (2009), URL: http://meeting.ascopubs.org/cgi/content/abstract/27/15S/4112
[25] Romond, P. C.; Rustici, M.; Gonze, D.; Goldbeter, A., Alternating oscillations and chaos in a model of two coupled biochemical oscillators driving successive phases of the cell cycle, Ann. New York Acad. Sci., 879, 180-193 (1999)
[26] E. Seijo Solis, A report on the discretization of a one-phase model of the cell cycle, Inria internship report, INRIA, 2006.; E. Seijo Solis, A report on the discretization of a one-phase model of the cell cycle, Inria internship report, INRIA, 2006.
[27] Kingman, J., A convexity property of positive matrices, Quart. J. Math. Oxford, 2, 12, 283-284 (1961) · Zbl 0101.25302
[28] Horn, R. A.; Johnson, C. R., Matrix Analysis (1986), Cambridge University Press: Cambridge University Press New York, NY, USA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.