×

zbMATH — the first resource for mathematics

Distribution of postcritically finite polynomials. III: Combinatorial continuity. (English) Zbl 1432.37074
A combinatorial approach based on external rays is used to study the distribution of postcritically finite (PCF) parameters in the moduli space of polynomials. Arithmetic methods were used by C. Favre and T. Gauthier [Isr. J. Math. 209, Part 1, 235–292 (2015; Zbl 1352.37202)] to prove a result showing the equidistribution of PCF parameters with respect to the bifurcation measure, with an exponential speed of convergence. The current work sets conditions on the combinatorics of angles with given period and preperiod landing at critical points, instead of requiring conditions on the parameter itself, to obtain the equidistribution of PCF Misiurewicz parameters with respect to the bifurcation measure.
The result may be viewed as supplying a measurable version of work of R. Dujardin and C. Favre [Am. J. Math. 130, No. 4, 979–1032 (2008; Zbl 1246.37071)] using results of J. Kiwi [Proc. Lond. Math. Soc. (3) 91, No. 1, 215–248 (2005; Zbl 1077.37038)] on the combinatorial space and the landing of external rays. In [J. Mod. Dyn. 11, 57–98 (2017; Zbl 1419.37040)], the authors earlier concerned themselves with speed of convergence of the equidistribution of PCF parameters with respect to the bifurcation measure.

MSC:
37F20 Combinatorics and topology in relation with holomorphic dynamical systems
30D40 Cluster sets, prime ends, boundary behavior
37F46 Bifurcations; parameter spaces in holomorphic dynamics; the Mandelbrot and Multibrot sets
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. Douady et J. H. Hubbard, Étude dynamique des polynômes complexes. Partie I, Publ. Math. d’Orsay 84, Département de Mathématiques, Univ. de Paris-Sud, Orsay, 1984.
[2] A. Douady et J. H. Hubbard, Étude dynamique des polynômes complexes. Partie II, Publ. Math. d’Orsay 85, Département de Mathématiques, Univ. de ParisSud, Orsay, 1985. [Du]R. Dujardin, The supports of higher bifurcation currents, Ann. Fac. Sci. Toulouse Math. 22 (2013), 445–464. [DF]R. Dujardin and C. Favre, Distribution of rational maps with a preperiodic critical point, Amer. J. Math. 130 (2008), 979–1032. [FG]C. Favre and T. Gauthier, Distribution of postcritically finite polynomials, Israel J. Math. 209 (2015), 235–292. [FRL]C. Favre et J. Rivera-Letelier, Équidistribution quantitative des points de petite hauteur sur la droite projective, Math. Ann. 335 (2006), 311–361. [G1]T. Gauthier, Strong bifurcation loci of full Hausdorff dimension, Ann. Sci. École Norm. Sup. (4) 45 (2012), 947–984. [G2]T. Gauthier, Higher bifurcation currents, neutral cycles, and the Mandelbrot set, Indiana Univ. Math. J. 63 (2014), 917–937. [GV]T. Gauthier and G. Vigny, Distribution of postcritically finite polynomials II: Speed of convergence, J. Modern Dynam. 11 (2017), 57–98. [GŚ]J. Graczyk and G. Świątek, Harmonic measure and expansion on the boundary of the connectedness locus, Invent. Math. 142 (2000), 605–629. [HS]J. H. Hubbard and D. Schleicher, Multicorns are not path connected, in: Frontiers in Complex Dynamics, Princeton Math. Ser. 51, Princeton Univ. Press, Princeton, NJ, 2014, 73–102.
[3] P. Ingram, A finiteness result for postcritically finite polynomials, Int. Math. Res. Notices 2012, 524–543. [IM]H. Inou and S. Mukherjee, Non-landing parameter rays of the multicorns, Invent. Math. 204 (2016), 869–893.
[4] J. Kiwi, Rational laminations of complex polynomials, in: Laminations and Foliations in Dynamics, Geometry and Topology (Stony Brook, NY, 1998), Contemp. Math. 269, Amer. Math. Soc., Providence, RI, 2001, 111–154. [K2]J. Kiwi, Wandering orbit portraits, Trans. Amer. Math. Soc. 354 (2002), 1473– 1485. [K3]J. Kiwi, Real laminations and the topological dynamics of complex polynomials, Adv. Math. 184 (2004), 207–267. [K4]J. Kiwi, Combinatorial continuity in complex polynomial dynamics, Proc. London Math. Soc. 91 (2005), 215–248. [L]G. Levin, On the theory of iterations of polynomial families in the complex plane, J. Soviet Math. 52 (1990), 3512–3522. [Mc]C. T. McMullen, The Mandelbrot set is universal, in: The Mandelbrot Set, Theme and Variations, London Math. Soc. Lecture Note Ser. 274, Cambridge Univ. Press, Cambridge, 2000, 1–17.
[5] J. Milnor, Remarks on iterated cubic maps, Experiment. Math. 1 (1992), 5–24. 48T. Gauthier and G. Vigny [Mi2]J. Milnor, Geometry and dynamics of quadratic rational maps (with an appendix by the author and L. Tan), Experiment. Math. 2 (1993), 37–83. [MNS]S. Mukherjee, S. Nakane and D. Schleicher, On multicorns and unicorns II: Bifurcations in spaces of antiholomorphic polynomials, Ergodic Theory Dynam. Systems 37 (2017), 859–899. [N]S. Nakane, Connectedness of the Tricorn, Ergodic Theory Dynam. Systems 13 (1993), 349–356.
[6] Y. Okuyama, Equidistribution of rational functions having a superattracting periodic point towards the activity current and the bifurcation current, Conform. Geom. Dynam. 18 (2017), 217–228. [PRLS] F. Przytycki, J. Rivera-Letelier and S. Smirnov, Equivalence and topological invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps, Invent. Math. 151 (2003), 29–63. [PR]F. Przytycki and S. Rohde, Rigidity of holomorphic Collet–Eckmann repellers, Ark. Mat. 37 (1999), 357–371.
[7] D. Schleicher, Rational parameter rays of the Mandelbrot set, in: Géométrie complexe et systèmes dynamiques (Orsay, 1995), Astérisque 261 (2000), xiv–xv and 405–443. [Sc2]D. Schleicher, On fibers and local connectivity of Mandelbrot and Multibrot sets, in: Fractal Geometry and Applications: a Jubilee of Benoît Mandelbrot. Part 1, Proc. Sympos. Pure Math. 72, Amer. Math. Soc., Providence, RI, 2004, 477–517. [Sh]M. Shishikura, The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets, Ann. of Math 147 (1998), 225–267. [Si]J. H. Silverman, The Arithmetic of Dynamical Systems, Grad. Texts in Math. 241, Springer, New York, 2007.
[8] S. Smirnov, Symbolic dynamics and Collet–Eckmann conditions, Int. Math. Res. Notices 2000, 333–351. [Ta]L. Tan, Similarity between the Mandelbrot set and Julia sets, Comm. Math. Phys. 134 (1990), 587–617.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.