×

zbMATH — the first resource for mathematics

Collet, Eckmann and the bifurcation measure. (English) Zbl 07089444
Summary: The moduli space \(\mathcal{M}_d\) of degree \(d\ge 2\) rational maps can naturally be endowed with a measure \(\mu _{\text{ bif }}\) detecting maximal bifurcations, called the bifurcation measure. We prove that the support of the bifurcation measure \(\mu _{\text{ bif }}\) has positive Lebesgue measure. To do so, we establish a general sufficient condition for the conjugacy class of a rational map to belong to the support of \(\mu _{\text{ bif }}\) and we exhibit a large set of Collet-Eckmann rational maps which satisfy this condition. As a consequence, we get a set of Collet-Eckmann rational maps of positive Lebesgue measure which are approximated by hyperbolic rational maps.

MSC:
37F45 Holomorphic families of dynamical systems; the Mandelbrot set; bifurcations (MSC2010)
37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets
32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)
37P45 Families and moduli spaces in arithmetic and non-Archimedean dynamical systems
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Aspenberg, M., Rational Misiurewicz maps are rare, Commun. Math. Phys., 291, 645-658, (2009) · Zbl 1185.37103
[2] Aspenberg, M., The Collet-Eckmann condition for rational functions on the Riemann sphere, Math. Z., 273, 935-980, (2013) · Zbl 1287.37032
[3] Astorg, M: Summability Condition and Rigidity for Finite Type Maps (2016). arXiv:1602.05172
[4] Berteloot, F.; Patrizio, G. (ed.); etal., Bifurcation currents in holomorphic families of rational maps, No. 2075, 1-93, (2013), Heidelberg · Zbl 1280.37039
[5] Bassanelli, G.; Berteloot, F., Bifurcation currents in holomorphic dynamics on \(\mathbb{P}^k\), J. Reine Angew. Math., 608, 201-235, (2007) · Zbl 1136.37025
[6] Benedicks, M.; Carleson, L., On iterations of \(1-ax^2\) on \((-1,1)\), Ann. Math. (2), 122, 1-25, (1985) · Zbl 0597.58016
[7] Buff, X.; Epstein, AL; Schleicher, D. (ed.), Bifurcation measure and postcritically finite rational maps, 491-512, (2009), Wellesley · Zbl 1180.37056
[8] Berteloot, F., Mayer, V.: Rudiments de Dynamique Holomorphe. Cours Spécialisés, vol. 7. Société Mathématique de France, Paris (2001) · Zbl 1051.37019
[9] Demailly, J-P, Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines, Mém. Soc. Math. France (N.S.), 19, 124, (1985) · Zbl 0579.32012
[10] DeMarco, L., Dynamics of rational maps: a current on the bifurcation locus, Math. Res. Lett., 8, 57-66, (2001) · Zbl 0991.37030
[11] Dujardin, R., The supports of higher bifurcation currents, Ann. Fac. Sci. Toulouse Math. (6), 22, 445-464, (2013) · Zbl 1314.37032
[12] Dujardin, R.; Favre, C., Distribution of rational maps with a preperiodic critical point, Am. J. Math., 130, 979-1032, (2008) · Zbl 1246.37071
[13] Gauthier, T., Strong bifurcation loci of full Hausdorff dimension, Ann. Sci. Éc. Norm. Sup. (4), 45, 947-984, (2012) · Zbl 1326.37036
[14] Gauthier, T., Higher bifurcation currents, neutral cycles, and the Mandelbrot set, Indiana Univ. Math. J., 63, 917-937, (2014) · Zbl 1325.37027
[15] Graczyk, J.; Smirnov, S., Collet, Eckmann and Hölder, Invent. Math., 133, 69-96, (1998) · Zbl 0916.30023
[16] Jonsson, M., Holomorphic motions of hyperbolic sets, Mich. Math. J., 45, 409-415, (1998) · Zbl 0974.37019
[17] Levin, G: Perturbations of weakly expanding critical orbits. Frontiers in Complex Dynamics: In Celebration of John Milnor’s 80th Birthday, pp. 163-196 (2014)
[18] Lyubich, Mikhail Yu, Investigation of the stability of the dynamics of rational functions, Teor. Funktsiĭ Funkt. Anal. i Prilozhen., 42, 72-91, (1984) · Zbl 0572.30023
[19] Mañé, R., On the uniqueness of the maximizing measure for rational maps, Bol. Soc. Brasil. Mat., 14, 27-43, (1983) · Zbl 0568.58028
[20] McMullen, C.T.: Complex Dynamics and Renormalization, Annals of Mathematics Studies, vol. 135. Princeton University Press, Princeton (1994)
[21] Milnor, J.; Branner, B. (ed.); Hjorth, P. (ed.); Petersen, CL (ed.), On Lattès Maps, 9-43, (2006), Zürich · Zbl 1235.37015
[22] Mañé, R.; Sad, P.; Sullivan, D., On the dynamics of rational maps, Ann. Sci. Éc. Norm. Sup. (4), 16, 193-217, (1983) · Zbl 0524.58025
[23] Przytycki, F., Conical limit set and Poincaré exponent for iterations of rational functions, Trans. Am. Math. Soc., 351, 2081-2099, (1999) · Zbl 0920.58037
[24] Przytycki, F.; Rivera-Letelier, J.; Smirnov, S., Equivalence and topological invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps, Invent. Math., 151, 29-63, (2003) · Zbl 1038.37035
[25] Rees, M., Positive measure sets of ergodic rational maps, Ann. Sci. Éc. Norm. Sup. (4), 19, 383-407, (1986) · Zbl 0611.58038
[26] Shishikura, M., The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets, Ann. Math. (2), 147, 225-267, (1998) · Zbl 0922.58047
[27] Sibony, N., Wong, P.M.: Some results on global analytic sets. In: Lelong, P., Skoda, H. (eds.) Séminaire Pierre Lelong-Henri Skoda (Analyse). Années 1978/79 (French), volume 822 of Lecture Notes in Mathematics, pp. 221-237. Springer, Berlin (1980)
[28] Tan, L., Similarity between the Mandelbrot set and Julia sets, Commun. Math. Phys., 134, 587-617, (1990) · Zbl 0726.58026
[29] Tsujii, M., Positive Lyapunov exponents in families of one-dimensional dynamical systems, Invent. Math., 111, 113-137, (1993) · Zbl 0787.58029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.