Favre, Charles; Gauthier, Thomas Continuity of the Green function in meromorphic families of polynomials. (English) Zbl 1401.37104 Algebra Number Theory 12, No. 6, 1471-1487 (2018). Summary: We prove that along any marked point the Green function of a meromorphic family of polynomials parametrized by the punctured unit disk is the sum of a logarithmic term and a continuous function. Cited in 2 Documents MSC: 37P30 Height functions; Green functions; invariant measures in arithmetic and non-Archimedean dynamical systems 37F45 Holomorphic families of dynamical systems; the Mandelbrot set; bifurcations (MSC2010) 37P45 Families and moduli spaces in arithmetic and non-Archimedean dynamical systems Keywords:polynomial dynamics; Green function; degeneration PDF BibTeX XML Cite \textit{C. Favre} and \textit{T. Gauthier}, Algebra Number Theory 12, No. 6, 1471--1487 (2018; Zbl 1401.37104) Full Text: DOI References: [1] 10.1007/BF01389777 · Zbl 0172.05301 [2] 10.1515/crll.2001.015 · Zbl 1007.11041 [3] 10.1017/fmp.2013.2 · Zbl 1320.37022 [4] 10.1215/00127094-1384773 · Zbl 1242.37062 [5] ; Berkovich, Spectral theory and analytic geometry over non-Archimedean fields. Mathematical Surveys and Monographs, 33, (1990) · Zbl 0715.14013 [6] 10.1007/BF02591353 · Zbl 0127.03401 [7] ; Chambert-Loir, Motivic integration and its interactions with model theory and non-Archimedean geometry, Volume II. London Math. Soc. Lecture Note Ser., 384, 1, (2011) · Zbl 1279.14027 [8] 10.2140/ant.2016.10.1031 · Zbl 1391.37076 [9] 10.1353/ajm.0.0009 · Zbl 1246.37071 [10] 10.1093/imrn/rnw245 [11] 10.1112/plms/pdp022 · Zbl 1254.37064 [12] 10.1093/imrn/rnw314 [13] 10.5802/aif.2215 · Zbl 1110.37036 [14] 10.1007/s00209-015-1443-6 · Zbl 1332.37068 [15] 10.1017/CBO9780511623776 [16] 10.1007/978-0-387-69904-2 [17] 10.24033/bsmf.2670 · Zbl 1392.37117 [18] 10.2307/2152886 · Zbl 0861.14018 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.