×

Learning transmission dynamics modelling of COVID-19 using comomodels. (English) Zbl 1492.92120

Summary: The COVID-19 epidemic continues to rage in many parts of the world. In the UK alone, an array of mathematical models have played a prominent role in guiding policymaking. Whilst considerable pedagogical material exists for understanding the basics of transmission dynamics modelling, there is a substantial gap between the relatively simple models used for exposition of the theory and those used in practice to model the transmission dynamics of COVID-19. Understanding these models requires considerable prerequisite knowledge and presents challenges to those new to the field of epidemiological modelling. In this paper, we introduce an open-source R package, comomodels, which can be used to understand the complexities of modelling the transmission dynamics of COVID-19 through a series of differential equation models. Alongside the base package, we describe a host of learning resources, including detailed tutorials and an interactive web-based interface allowing dynamic investigation of the model properties. We then use comomodels to illustrate three key lessons in the transmission of COVID-19 within R Markdown vignettes.

MSC:

92D30 Epidemiology
92-08 Computational methods for problems pertaining to biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ferguson, Neil M.; Laydon, Daniel; Nedjati-Gilani, Gemma; Imai, Natsuko; Ainslie, Kylie; Baguelin, Marc; Bhatia, Sangeeta; Boonyasiri, Adhiratha; Cucunubá, Zulma; Cuomo-Dannenburg, Gina; Dighe, Amy; Dorigatti, Ilaria; Fu, Han; Gaythorpe, Katy; Green, Will; Hamlet, Arran; Hinsley, Wes; Okell, Lucy C.; van Elsland, Sabine; Thompson, Hayley; Verity, Robert; Volz, Erik; Wang, Haowei; Wang, Yuanrong; Walker, Patrick G. T.; Walters, Caroline; Winskill, Peter; Whittaker, Charles; Donnelly, Christl A.; Riley, Steven; Ghani, Azra C., Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand (2020) · Zbl 1478.92234
[2] Sasse, Tom; Haddon, Catherine; Gemma, Tetlow, Insitute for government, Timeline of UK coronavirus lockdowns, March 2020 to March 2021 (2021)
[3] Anderson, Roy M.; May, Robert M., Infectious Diseases of Humans: Dynamics and Control (1992), Oxford University Press
[4] Brauer, Fred, Compartmental models in epidemiology, (Mathematical epidemiology (2008), Springer), 19-79 · Zbl 1206.92023
[5] Anderson, Roy; Donnelly, Christi; Hollingsworth, Deirdre; Keeling, Matt; Vegvari, Carolin; Baggaley, Rebecca; Maddren, Rosie, Reproduction number (R) and growth rate (r) of the COVID-19 epidemic in the UK: methods of estimation, data sources, causes of heterogeneity, and use as a guide in policy formulation, R. Soc., 2020 (2020)
[6] Keeling, Matt J.; Hill, Edward M.; Gorsich, Erin E.; Penman, Bridget; Guyver-Fletcher, Glen; Holmes, Alex; Leng, Trystan; McKimm, Hector; Tamborrino, Massimiliano; Dyson, Louise; Tildesley, Michael J., Predictions of COVID-19 dynamics in the UK: short-term forecasting and analysis of potential exit strategies, PLoS Comput. Biol., 17, 1, Article e1008619 pp. (2021)
[7] Birrell, Paul; Blake, Joshua; van Leeuwen, Edwin; Gent, Nick; De Angelis, Daniela, Real-time nowcasting and forecasting of COVID-19 dynamics in England: the first wave, Philos. Trans. R. Soc. B, 376, 1829, Article 20200279 pp. (2021)
[8] Flaxman, Seth; Mishra, Swapnil; Gandy, Axel; Unwin, H. Juliette T.; Mellan, Thomas A.; Coupland, Helen; Whittaker, Charles; Zhu, Harrison; Berah, Tresnia; Eaton, Jeffrey W.; Monod, Mélodie; Perez-Guzman, Pablo N.; Schmit, Nora; Cilloni, Lucia; Ainslie, Kylie E. C.; Baguelin, Marc; Boonyasiri, Adhiratha; Boyd, Olivia; Cattarino, Lorenzo; Cooper, Laura V.; Cucunubá, Zulma; Cuomo-Dannenburg, Gina; Dighe, Amy; Djaafara, Bimandra; Dorigatti, Ilaria; van Elsland, Sabine L.; FitzJohn, Richard G.; Gaythorpe, Katy A. M.; Geidelberg, Lily; Grassly, Nicholas C.; Green, William D.; Hallett, Timothy; Hamlet, Arran; Hinsley, Wes; Jeffrey, Ben; Knock, Edward; Laydon, Daniel J.; Nedjati-Gilani, Gemma; Nouvellet, Pierre; Parag, Kris V.; Siveroni, Igor; Thompson, Hayley A.; Verity, Robert; Volz, Erik; Walters, Caroline E.; Wang, Haowei; Wang, Yuanrong; Watson, Oliver J.; Winskill, Peter; Xi, Xiaoyue; Walker, Patrick G. T.; Ghani, Azra C.; Donnelly, Christl A.; Riley, Steven; Vollmer, Michaela A. C.; Ferguson, Neil M.; Okell, Lucy C.; Bhatt, Samir; Team, Imperial College COVID-19 Response, Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe, Nature, 584, 7820, 257-261 (2020)
[9] Nouvellet, Pierre; Bhatia, Sangeeta; Cori, Anne; Ainslie, Kylie E. C.; Baguelin, Marc; Bhatt, Samir; Boonyasiri, Adhiratha; Brazeau, Nicholas F.; Cattarino, Lorenzo; Cooper, Laura V.; Coupland, Helen; Cucunuba, Zulma M.; Cuomo-Dannenburg, Gina; Dighe, Amy; Djaafara, Bimandra A.; Dorigatti, Ilaria; Eales, Oliver D.; van Elsland, Sabine L.; Nascimento, Fabricia F.; FitzJohn, Richard G.; Gaythorpe, Katy A. M.; Geidelberg, Lily; Green, William D.; Hamlet, Arran; Hauck, Katharina; Hinsley, Wes; Imai, Natsuko; Jeffrey, Benjamin; Knock, Edward; Laydon, Daniel J.; Lees, John A.; Mangal, Tara; Mellan, Thomas A.; Nedjati-Gilani, Gemma; Parag, Kris V.; Pons-Salort, Margarita; Ragonnet-Cronin, Manon; Riley, Steven; Unwin, H. Juliette T.; Verity, Robert; Vollmer, Michaela A. C.; Volz, Erik; Walker, Patrick G. T.; Walters, Caroline E.; Wang, Haowei; Watson, Oliver J.; Whittaker, Charles; Whittles, Lilith K.; Xi, Xiaoyue; Ferguson, Neil M.; Donnelly, Christl A., Reduction in mobility and COVID-19 transmission, Nature Commun., 12, 1, 1-9 (2021)
[10] Hogan, Alexandra B.; Winskill, Peter; Watson, Oliver J.; Walker, Patrick G. T.; Whittaker, Charles; Baguelin, Marc; Haw, David; Løchen, Alessandra; Gaythorpe, Katy A. M.; Team, Imperial College COVID-19 Response; Muhib, Farzana; Smith, Peter; Hauck, Katharina; Ferguson, Neil M.; Ghani, Azra C., Report 33: modelling the allocation and impact of a COVID-19 vaccine (2020)
[11] Walker, Patrick G. T.; Whittaker, Charles; Watson, Oliver J.; Baguelin, Marc; Winskill, Peter; Hamlet, Arran; Djafaara, Bimandra A.; Cucunubá, Zulma; Mesa, Daniela Olivera; Green, Will; Thompson, Hayley; Nayagam, Shevanthi; Ainslie, Kylie E. C.; Bhatia, Sangeeta; Bhatt, Samir; Boonyasiri, Adhiratha; Boyd, Olivia; Brazeau, Nicholas F.; Cattarino, Lorenzo; Cuomo-Dannenburg, Gina; Dighe, Amy; Donnelly, Christl A.; Dorigatti, Ilaria; van Elsland, Sabine L.; FitzJohn, Rich; Fu, Han; Gaythorpe, Katy A. M.; Geidelberg, Lily; Grassly, Nicholas; Haw, David; Hayes, Sarah; Hinsley, Wes; Imai, Natsuko; Jorgensen, David; Knock, Edward; Laydon, Daniel; Mishra, Swapnil; Nedjati-Gilani, Gemma; Okell, Lucy C.; Unwin, H. Juliette; Verity, Robert; Vollmer, Michaela; Walters, Caroline E.; Wang, Haowei; Wang, Yuanrong; Xi, Xiaoyue; Lalloo, David G.; Ferguson, Neil M.; Ghani, Azra C., The impact of COVID-19 and strategies for mitigation and suppression in low-and middle-income countries, Science, 369, 6502, 413-422 (2020) · Zbl 1478.92234
[12] Aguas, Ricardo; White, Lisa; Hupert, Nathaniel; Shretta, Rima; Pan-Ngum, Wirichada; Celhay, Olivier; Moldokmatova, Ainura; Arifi, Fatima; Mirzazadeh, Ali; Sharifi, Hamid; Adib, Keyrellous; Sahak, Mohammad Nadir; Franco, Caroline; Coutinho, Renato; CoMo Consortium, Modelling the COVID-19 pandemic in context: an international participatory approach, BMJ Glob. Health, 5, 12 (2020)
[13] The Como-DTC Development Team, Comomodels GUI (2021), https://comodtc.shinyapps.io/comomodels-explore
[14] Diekmann, Odo; Heesterbeek, J. A.P.; Metz, Johan A. J., On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28, 4, 365-382 (1990) · Zbl 0726.92018
[15] Prem, Kiesha; Cook, Alex R.; Jit, Mark, Projecting social contact matrices in 152 countries using contact surveys and demographic data, PLoS Comput. Biol., 13, 9, Article e1005697 pp. (2017)
[16] Verity, Robert; Okell, Lucy C.; Dorigatti, Ilaria; Winskill, Peter; Whittaker, Charles; Imai, Natsuko; Cuomo-Dannenburg, Gina; Thompson, Hayley; Walker, Patrick G. T.; Fu, Han; Dighe, Amy; Griffin, Jamie T.; Baguelin, Marc; Bhatia, Sangeeta; Boonyasiri, Adhiratha; Cori, Anne; Cucunubá, Zulma; FitzJohn, Rich; Gaythorpe, Katy; Green, Will; Hamlet, Arran; Hinsley, Wes; Laydon, Daniel; Nedjati-Gilani, Gemma; Riley, Steven; van Elsland, Sabine; Volz, Erik; Wang, Haowei; Wang, Yuanrong; Xi, Xiaoyue; Donnelly, Christl A.; Ghani, Azra C.; Ferguson, Neil M., Estimates of the severity of coronavirus disease 2019: a model-based analysis, Lancet Infect. Dis., 20, 6, 669-677 (2020)
[17] Gandhi, Monica; Yokoe, Deborah S.; Havlir, Diane V., Asymptomatic transmission, the Achilles’ heel of current strategies to control Covid-19, N. Engl. J. Med., 382, 22, 2158-2160 (2020)
[18] Johansson, Michael A.; Quandelacy, Talia M.; Kada, Sarah; Prasad, Pragati Venkata; Steele, Molly; Brooks, John T.; Slayton, Rachel B.; Biggerstaff, Matthew; Butler, Jay C., SARS-CoV-2 transmission from people without COVID-19 symptoms, JAMA Netw. Open, 4, 1, e2035057 (2021)
[19] Byambasuren, Oyungerel; Cardona, Magnolia; Bell, Katy; Clark, Justin; McLaws, Mary-Louise; Glasziou, Paul, Estimating the extent of asymptomatic COVID-19 and its potential for community transmission: systematic review and meta-analysis, Official J. Assoc. Med. Microbiol. Infect. Dis. Can., 5, 4, 223-234 (2020)
[20] Leidi, Antonio; Koegler, Flora; Dumont, Roxane; Dubos, Richard; Zaballa, María-Eugenia; Piumatti, Giovanni; Coen, Matteo; Berner, Amandine; Farhoumand, Pauline Darbellay; Vetter, Pauline; Vuilleumier, Nicolas; Kaiser, Laurent; Courvoisier, Delphine; Azman, Andrew S.; Guessous, Idris; Stringhini, Silvia; study group, SEROCoV-POP, Risk of Reinfection After Seroconversion to SARS-CoV-2: A Population-Based Propensity-Score Matched Cohort Study (2021), Cold Spring Harbor Laboratory Press, MedRxiv
[21] Abu-Raddad, Laith J.; Chemaitelly, Hiam; Coyle, Peter; Malek, Joel A.; Ahmed, Ayeda A.; Mohamoud, Yasmin A.; Younuskunju, Shameem; Ayoub, Houssein H.; Al Kanaani, Zaina; Al Kuwari, Einas; Butt, Adeel A.; Jeremijenko, Andrew; Hassan Kaleeckal, Anvar; Nizar Latif, Ali; Mohammad Shaik, Riyazuddin; Abdul Rahim, Hanan F.; Nasrallah, Gheyath K.; Yassine, Hadi M.; Ghaith Al Kuwari, Mohamed; Eid Al Romaihi, Hamad; Al-Thani, Mohamed H.; Al Khal, Abdullatif; Bertollini, Roberto, SARS-CoV-2 antibody-positivity protects against reinfection for at least seven months with 95
[22] Gallais, Floriane; Gantner, Pierre; Bruel, Timothée; Velay, Aurélie; Planas, Delphine; Wendling, Marie-Josée; Bayer, Sophie; Solis, Morgane; Laugel, Elodie; Reix, Nathalie; Schneider, Anne; Glady, Ludovic; Panaget, Baptiste; Collongues, Nicolas; Partisani, Marialuisa; Lessinger, Jean-Marc; Fontanet, Arnaud; Rey, David; Hansmann, Yves; Kling-Pillitteri, Laurence; Schwartz, Olivier; De Sèze, Jérome; Meyer, Nicolas; Gonzalez, Maria; Schmidt-Mutter, Catherine; Fafi-Kremer, Samira, Evolution of antibody responses up to 13 months after SARS-CoV-2 infection and risk of reinfection, EBioMedicine, 71, Article 103561 pp. (2021)
[23] Calvetti, Daniela; Hoover, Alexander P.; Rose, Johnie; Somersalo, Erkki, Metapopulation network models for understanding, predicting, and managing the coronavirus disease COVID-19, Front. Phys., 8, 261 (2020)
[24] Kramer, Sarah C.; Pei, Sen; Shaman, Jeffrey, Forecasting influenza in europe using a metapopulation model incorporating cross-border commuting and air travel, PLoS Comput. Biol., 16, 10, 1-21 (2020)
[25] Tun, Sai Thein Than; Parker, Daniel M.; Aguas, Ricardo; White, Lisa J., The assembly effect: the connectedness between populations is a double-edged sword for public health interventions, Malar. J., 20, 189 (2021)
[26] Xin, Hualei; Li, Yu; Wu, Peng; Li, Zhili; Lau, Eric H. Y.; Qin, Ying; Wang, Liping; Cowling, Benjamin J.; Tsang, Tim; Li, Zhongjie, Estimating the latent period of coronavirus disease 2019 (COVID-19), Clin. Infect. Dis. Official Publ. Infect. Dis. Soc. Am. (2021)
[27] Hale, Thomas; Angrist, Noam; Goldszmidt, Rafael; Kira, Beatriz; Petherick, Anna; Phillips, Toby; Webster, Samuel; Cameron-Blake, Emily; Hallas, Laura; Majumdar, Saptarshi, A global panel database of pandemic policies (Oxford COVID-19 government response tracker), Nat. Hum. Behav., 5, 4, 529-538 (2021)
[28] Davies, Nicholas G.; Kucharski, Adam J.; Eggo, Rosalind M.; Gimma, Amy; Edmunds, W. John; Jombart, Thibaut; O’Reilly, Kathleen; Endo, Akira; Hellewell, Joel; Nightingale, Emily S.; Quilty, Billy J.; Jarvis, Christopher I.; Russell, Timothy W.; Klepac, Petra; Bosse, Nikos I.; Funk, Sebastian; Abbott, Sam; Medley, Graham F.; Gibbs, Hamish; Pearson, Carl A. B.; Flasche, Stefan; Jit, Mark; Clifford, Samuel; Prem, Kiesha; Diamond, Charlie; Emery, Jon; Deol, Arminder K.; Procter, Simon R.; van Zandvoort, Kevin; Sun, Yueqian Fiona; Munday, James D.; Rosello, Alicia; Auzenbergs, Megan; Knight, Gwen; Houben, Rein M. G.J.; Liu, Yang, Effects of non-pharmaceutical interventions on COVID-19 cases, deaths, and demand for hospital services in the UK: a modelling study, Lancet Public Health, 5, 7, e375-e385 (2020)
[29] He, Xi; Lau, Eric H. Y.; Wu, Peng; Deng, Xilong; Wang, Jian; Hao, Xinxin; Lau, Yiu Chung; Wong, Jessica Y.; Guan, Yujuan; Tan, Xinghua; Mo, Xiaoneng; Chen, Yanqing; Liao, Baolin; Chen, Weilie; Hu, Fengyu; Zhang, Qing; Zhong, Mingqiu; Wu, Yanrong; Zhao, Lingzhai; Zhang, Fuchun; Cowling, Benjamin J.; Li, Fang; Leung, Gabriel M., Temporal dynamics in viral shedding and transmissibility of COVID-19, Nat. Med., 26, 5, 672-675 (2020)
[30] Wickham, Hadley, Ggplot2: Elegant Graphics for Data Analysis (2016), Springer-Verlag: Springer-Verlag New York · Zbl 1397.62006
[31] United Nations, World Population Prospects 2019, Online Edition. Rev. 1 (2019), United Nations, Department of Economic and Social Affairs, Population Division (2019)
[32] Plotly Technologies Inc., Collaborative Data Science (2015), Plotly Technologies Inc.: Plotly Technologies Inc. Montreal, QC
[33] Baker, Simon, Pandemic response shines spotlight on coding in science (2020), https://www.timeshighereducation.com/news/pandemic-response-shines-spotlight-coding-science. (Accessed 06 December 2021)
[34] Whitty, Christopher J. M., What makes an academic paper useful for health policy?, BMC medicine, 13, 1, 1-5 (2015)
[35] Horner, Jack K.; Symons, John F., Software engineering standards for epidemiological models, History Philos. Life Sci., 42, 4, 1-24 (2020)
[36] Habli, Ibrahim; Alexander, Rob; Hawkins, Richard; Sujan, Mark; McDermid, John; Picardi, Chiara; Lawton, Tom, Enhancing COVID-19 decision making by creating an assurance case for epidemiological models, BMJ Health Care Inf., 27, 3 (2020)
[37] Mossong, Joël; Hens, Niel; Jit, Mark; Beutels, Philippe; Auranen, Kari; Mikolajczyk, Rafael; Massari, Marco; Salmaso, Stefania; Tomba, Gianpaolo Scalia; Wallinga, Jacco; Heijne, Janneke; Sadkowska-Todys, Malgorzata; Rosinska, Magdalena; Edmunds, W. John, Social contacts and mixing patterns relevant to the spread of infectious diseases, PloS Med., 5, 3, Article e74 pp. (2008)
[38] UK Health Security Agency (UK HSA), Cases in London: Cases by specimen date (2021), Online https://coronavirus.data.gov.uk/details/cases?areaType=region&areaName=London. (Accessed 08 October 2021)
[39] Murphy, Susan A.; Van der Vaart, Aad W., On profile likelihood, J. Amer. Statist. Assoc., 95, 450, 449-465 (2000) · Zbl 0995.62033
[40] Kreutz, Clemens; Raue, Andreas; Kaschek, Daniel; Timmer, Jens, Profile likelihood in systems biology, FEBS J., 280, 11, 2564-2571 (2013)
[41] Danon, Leon; Brooks-Pollock, Ellen; Bailey, Mick; Keeling, Matt, A spatial model of COVID-19 transmission in England and Wales: early spread, peak timing and the impact of seasonality, Philos. Trans. R. Soc. B, 376, 1829, Article 20200272 pp. (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.