×

Chaste: A test-driven approach to software development for biological modelling. (English) Zbl 1197.68038

Summary: Chaste (‘Cancer, heart and soft-tissue environment’) is a software library and a set of test suites for computational simulations in the domain of biology. Current functionality has arisen from modelling in the fields of cancer, cardiac physiology and soft-tissue mechanics. It is released under the LGPL 2.1 licence. Chaste has been developed using agile programming methods. The project began in 2005 when it was reasoned that the modelling of a variety of physiological phenomena required both a generic mathematical modelling framework, and a generic computational/simulation framework. The Chaste project evolved from the Integrative Biology (IB) e-Science Project, an inter-institutional project aimed at developing a suitable IT infrastructure to support physiome-level computational modelling, with a primary focus on cardiac and cancer modelling.

MSC:

68N99 Theory of software
92-04 Software, source code, etc. for problems pertaining to biology
92C50 Medical applications (general)

Software:

PyCml; CellML; Chaste
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Beck, K.; Andres, C., Extreme Programming Explained: Embrace Change (2004), Addison-Wesley: Addison-Wesley Boston
[2] Pitt-Francis, J.; Bernabeu, M. O.; Cooper, J.; Garny, A.; Momtahan, L.; Osborne, J.; Pathmanathan, P.; Rodríguez, B.; Whiteley, J. P.; Gavaghan, D. J., Chaste: Using agile programming techniques to develop computational biology software, Phil. Trans. R. Soc. A, 366, 3111-3136 (2008)
[3] Noble, D., A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pacemaker potentials, J. Physiol., 160, 317-352 (1962)
[4] Vigmond, E. J.; Weber dos Santos, R.; Prassl, A. J.; Deo, M.; Plank, G., Solvers for the cardiac bidomain equations, Prog. Biophys. Mol. Biol., 96, 3-18 (2008)
[5] Bordas, R.; Carpentieri, B.; Fotia, G.; Maggio, F.; Nobes, R.; Pitt-Francis, J.; Southern, J., Simulation of cardiac electrophysiology on next-generation high-performance computers, Phil. Trans. R. Soc. A, 367, 1895, 1951-1969 (2009) · Zbl 1185.65141
[6] Keener, J. P.; Sneyd, J., Mathematical Physiology (1998), Springer: Springer New York · Zbl 0913.92009
[7] Luo, C.-H.; Rudy, Y., A model of the ventricular cardiac action potential: Depolarization, repolarization, and their interaction, Circ. Res., 68, 1501-1526 (1991)
[8] Keener, J. P.; Bogar, K., A numerical method for the solution of the bidomain equations in cardiac tissue, Chaos, 8, 234-241 (1998) · Zbl 1069.92507
[9] Whiteley, J. P., An efficient numerical technique for the solution of the monodomain and bidomain equations, IEEE Trans. Biomed. Eng., 53, 2139-2147 (2006)
[10] Lloyd, C.; Halstead, M.; Nielsen, P., CellML: its future, present and past, Prog. Biophys. Mol. Biol., 85, 433-450 (2004)
[11] Whiteley, J. P., An efficient technique for the numerical solution of the bidomain equations, Ann. Biomed. Eng., 36, 1398-1408 (2008)
[12] Bernabeu, M.; Bordas, R.; Pathmanathan, P.; Pitt-Francis, J.; Cooper, J.; Garny, A.; Gavaghan, D.; Rodríguez, B.; Southern, J.; Whiteley, J., Chaste: incorporating a novel multi-scale spatial and temporal algorithm into a large-scale open source library, Phil. Trans. R. Soc. A, 367, 1895, 1907-1930 (2009) · Zbl 1185.92057
[13] van Leeuwen, I. M.M.; Byrne, H. M.; Jensen, O. E.; King, J. R., Crypt dynamics and colorectal cancer: advances in mathematical modelling, Cell Proliferation, 39, 3, 157-181 (2006)
[14] van Leeuwen, I. M.M.; Edwards, C. M.; Ilyas, M.; Byrne, H. M., Towards a multiscale model for colorectal cancer, World J. Gastroenterol., 13, 9, 1399-1407 (2007)
[15] van Leeuwen, I. M.M.; Mirams, G. R.; Walter, A.; Fletcher, A.; Murray, P.; Osborne, J.; Varma, S.; Young, S. J.; Cooper, J.; Doyle, B.; Pitt-Francis, J.; Momtahan, L.; Pathmanathan, P.; Whiteley, J. P.; Chapman, S. J.; Gavaghan, D. J.; Jensen, O. E.; King, J. R.; Maini, P. K.; Waters, S. L.; Byrne, H. M., An integrative computational model for intestinal tissue renewal, Cell Proliferation, 42, 5, 617-636 (2009)
[16] Potten, C. S.; Booth, C.; Hargreaves, D., The small intestine as a model for evaluating adult tissue stem cell drug targets, Cell proliferation, 36, 115-129 (2003)
[17] Yatabe, Y.; Tavaré, S.; Shibata, D., Investigating stem cells in human colon by using methylation patterns, PNAS, 98, 19, 10839-10844 (2001)
[18] van Leeuwen, I. M.M.; Byrne, H. M.; Jensen, O. E.; King, J. R., Elucidating the interactions between the adhesive and transcriptional functions of beta-catenin in normal and cancerous cells, J. Theor. Biol., 247, 1, 77-102 (2007) · Zbl 1455.92042
[19] Meineke, F.; Potten, C.; Loeffler, M., Cell migration and organization in the intestinal crypt using a lattice-free model, Cell proliferation, 34, 4, 253-266 (2001)
[20] Swat, M.; Kel, A.; Herzel, H., Bifurcation analysis of the regulatory modules of the mammalian \(G_1/S\) transition, Bioinformatics, 20, 10, 1506-1511 (2004)
[21] Weliky, M.; Oster, G., The mechanical basis of cell rearrangement. I. Epithelial morphogenesis during Fundulus epibody, Development, 109, 373-386 (1990)
[22] Novak, B.; Tyson, J. J., A model for restriction point control of the mammalian cell cycle, J. Theor. Biol., 230, 563-579 (2004) · Zbl 1447.92048
[23] Lee, E.; Salic, A.; Krüger, R.; Heinrich, R.; Kirschner, M. W., The roles of APC and axin derived from experimental and theoretical analysis of the Wnt pathway, Pub. Lib. Sci. Biol., 1, 116-132 (2003)
[24] G. Mirams, H. Byrne, J. King, A multiple timescale analysis of a mathematical model of the Wnt/Β;-catenin signalling pathway, J. Math. Biol. (online ahead of print), doi:10.1007/s00285-009-0262-y; G. Mirams, H. Byrne, J. King, A multiple timescale analysis of a mathematical model of the Wnt/Β;-catenin signalling pathway, J. Math. Biol. (online ahead of print), doi:10.1007/s00285-009-0262-y · Zbl 1311.92094
[25] Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P., Molecular Biology of the Cell (2002), Garland Science: Garland Science New York
[26] Morgan, D. O., The Cell Cycle. Principles of Control (2006), Oxford University Press: Oxford University Press Oxford
[27] Gaspar, C.; Fodde, R., APC dosage effects in tumorigenesis and stem cell differentiation, Intl. J. Dev. Biol., 48, 5-6, 377-386 (2004)
[28] Loeffler, M.; Stein, R.; Wichmann, H. E.; Potten, C. S.; Kaur, P.; Chwalinski, S., Intestinal crypt proliferation. I. A comprehensive model of steady-state proliferation in the crypt, Cell Tissue Kinetics, 19, 627-645 (1986)
[29] Drasdo, D.; Holme, S., A single-cell-based model of tumor growth in vitro: monolayers and spheroids, Physical Biology, 2, 3, 133-147 (2005)
[30] Galle, J., Modeling the effect of deregulated proliferation and apoptosis on the growth dynamics of epithelial cell populations in vitro, Biophysical Journal, 88, 62-75 (2005)
[31] Pallson, E., A three-dimensional model of cell movement in multicellular systems, Future Generation Computer Systems, 17, 7, 835-852 (2001) · Zbl 1052.68142
[32] Weliky, M.; Minsuk, S.; Keller, R.; Oster, G., Notochord morphogenesis in Xenopus Laevis: simulation of cell behavior underlying tissue convergence and extension, Development, 113, 4, 1231-1244 (1991)
[33] Delaunay, B., Sur la sphère vide, Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk, 7, 793-800 (1934) · JFM 60.0946.06
[34] Cary, J. R.; Shasharina, S. G.; Cummings, J. C.; Reynders, J. V.; Hinker, P. J., Comparison of C++ and Fortran 90 for object-oriented scientific programming, Computer Physics Communications, 105, 1, 20-36 (1997) · Zbl 0931.68024
[35] Pitt-Francis, J.; Garny, A.; Gavaghan, D., Enabling computer models of the heart for high-performance computers and the grid, Phil. Trans. R. Soc. A, 364, 1843, 1501-1516 (2006)
[36] Fagg, G. E.; Dongarra, J., FT-MPI: Fault tolerant MPI, supporting dynamic applications in a dynamic world, PVM/MPI, 2000, 346-353 (2000)
[37] Lemarinier, P.; Bouteiller, A.; Krawezik, G.; Cappello, F., Coordinated checkpoint versus message log for fault tolerant MPI, Int. J. High Perform. Comput. Netw., 2, 2-4, 146-155 (2004)
[38] Reddy, J. N., An Introduction to the Finite Element Method (1993), McGraw-Hill: McGraw-Hill New York · Zbl 0561.65079
[39] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. M., Design Atterns: Elements of Reusable Object-Oriented Software (1995), Addison-Wesley
[40] Cuellar, A. A.; Lloyd, C. M.; Nielsen, P. M.F.; Bullivant, D. P.; Nickerson, D. P.; Hunter, P. J., An overview of CellML 1.1, a biological model description language, Simulation, 79, 740-747 (2003)
[41] Cooper, J.; McKeever, S.; Garny, A., On the application of partial evaluation to the optimisation of cardiac electrophysiological simulations, (PEPM ’06: Proceedings of the 2006 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation (2006), ACM Press: ACM Press New York, NY, USA), 12-20
[42] Garny, A.; Nickerson, D. P.; Cooper, J.; Weber dos Santos, R.; Miller, A. K.; McKeever, S. W.; Nielsen, P. M.F.; Hunter, P. J., CellML and associated tools and techniques, Phil. Trans. R. Soc. A, 366, 3017-3043 (2008)
[43] Bernabeu, M.; Bishop, M.; Pitt-Francis, J.; Gavaghan, D.; Grau, V.; Rodriguez, B., High performance computer simulations for the study of biological function in 3D heart models incorporating fibre orientation and realistic geometry at para-cellular resolution, Computers in Cardiology, 721-724 (2008)
[44] Taylor, R. W.; Barron, M. J.; Borthwick, G. M.; Gospel, A.; Chinnery, P. F.; Samuels, D. C.; Taylor, G. A.; Plusa, S. M.; Needham, S. J.; Greaves, L. C.; Kirkwood, T. B.L.; Turnbull, D. M., Mitochondrial DNA mutations in human colonic crypt stem cells, J. Clin. Invest., 112, 9, 1351-1360 (2003)
[45] Greaves, L. C.; Preston, S. L.; Tadrous, P. J.; Taylor, R. W.; Barron, M. J.; Oukrif, D.; Leedham, S. J.; Deheragoda, M.; Sasieni, P.; Novelli, M. R., Mitochondrial DNA mutations are established in human colonic stem cells, and mutated clones expand by crypt fission, PNAS, 103, 3, 714-719 (2006)
[46] McDonald, S. A.; Preston, S. L.; Greaves, L. C.; Leedham, S. J.; Lovell, M. A.; Jankowski, J. A.; Turnbull, D. M.; Wright, N. A., Clonal expansion in the human gut: Mitochondrial DNA mutations show us the way, Cell Cycle, 5, 8, 808-811 (2006)
[47] Pathmanathan, P.; Whiteley, J. P., A numerical method for cardiac mechanoelectric simulations, Annals of Biomedical Engineering, 37, 5, 860-873 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.