×

Analytical results on the unsteady rotational flow of fractional-order non-Newtonian fluids with shear stress on the boundary. (English) Zbl 1434.76049

Summary: The objective of this paper is to study the unsteady rotational flow of some non Newtonian fluids with Caputo fractional derivative through an infinite circular cylinder by means of the finite Hankel and Laplace transform. The novelty of the work is that motion is produced by applying tangential force not a specific but general function of time on the boundary. Initially the cylinder is at rest and after time \(t_o = 0^+\) it begins to rotate about its axis with an angular velocity \(\tau_o g(t)\). The obtained solutions of velocity field and shear stress have been presented under series form in terms of generalized \(G\)-function, satisfying all imposed initial and boundary conditions. The corresponding solutions can be easily particularized to give similar solutions from existing literature for Oldroyd-B fluids, Maxwell fluids, Second grade fluids and Newtonian fluids with/without fractional derivatives performing similar motions.

MSC:

76F10 Shear flows and turbulence
76A05 Non-Newtonian fluids
65R10 Numerical methods for integral transforms
76U05 General theory of rotating fluids
26A33 Fractional derivatives and integrals
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. Atangana and J. F. Gomez Aguilar, Decolonisation of fractional calculus rules Breaking commutativity and associativity to capture more natural phenomena, The European Physical Journal Plus, 133 (2018), 166.
[2] A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Physica A : Statistical Mechanics and its Applications, 505, 688-706 (2018) · Zbl 1514.34009 · doi:10.1016/j.physa.2018.03.056
[3] H. A. Attia; M. A. Abdeen; W. A. El-Meged, Transient generalized Couette flow of viscoelastic fluid through a porous medium with variable viscosity and pressure gradient, Arab. J. Sci. Eng., 38, 3451-3458 (2013) · doi:10.1007/s13369-013-0668-0
[4] I. Burdujan, The flow of a particular class of Oldroyd-B fluids, Ann. Acad. Romanian Sci. Ser. Math. Appl., 3, 23-45 (2011) · Zbl 1284.76038
[5] A. Coronel Escamilla; F. Torres; J. F. Gomez-Aguilar; F. Escobar-Jimenez; G. V. Guerrero-Ramirez, On the trajectory tracking control for an SCARA robot manipulator in a fractional model driven by induction motors with PSO tuning, Multibody System Dynamics, 43, 257-277 (2018) · Zbl 1407.70014 · doi:10.1007/s11044-017-9586-3
[6] A. C. Escamilla, J. F. Gomez Aguilar, D. Baleanu, T. Cordova-Fraga, R.Jimenez, V. Peregrino and M. M. Al Qurashi, Bateman Feshbach Tikochinsky and Caldirola Kanai Oscillators with New Fractional Differentiation, Entropy, 19 (2017), 55.
[7] C. Escamilla et al., A numerical solution for a variable-order reaction diffusion model by using fractional derivatives with non-local and non-singular kernel, Physica A: Statistical Mechanics and its Applications, 491 (2018), 406-424. · Zbl 1514.65100
[8] C. Fetecau; Mehwish Rana; Niat Nigar; C. Fetecau, First exact solutions for flows of rate type fluids in a circular duct that applies a constant couple to the fluid, Z. Naturforsch, 69, 232-238 (2014) · doi:10.5560/zna.2014-0022
[9] C. Fetecau; Q. Rubbab; S. Akhter; C. Fetecau, New methods to provide exact solutions for some unidirectional motions of rate type fluids, Thermal Science, 20, 7-20 (2016) · doi:10.2298/TSCI130225130F
[10] M. A. Fontelos; A. Friedman, Stationary non-Newtonian fluid flows in channellike and pipe-like domains, Arch. Rational Mech. Anal., 151, 1-43 (2000) · Zbl 1018.76005 · doi:10.1007/s002050050192
[11] B. J. Gireesha; K. R. Madhura; C. S. Bagewadi, Flow of an unsteady dusty fluid through porous media in a uniform pipe with sector of a circle as cross-section, Int. J. Pure Appl. Math., 27, 20-38 (2012) · Zbl 1348.76148
[12] J. F. Gomez Aguilar, T. Cordova-Fraga, J. Torres-Jimenez, R. F. Escobar-Jimenez, V. H. Olivares-Peregrino and G. V. Guerrero-Ramrez, Nonlocal transport processes and the fractional cattaneo-vernotte equation, Mathematical Problems in Engineering, 2016 (2016), Art. ID 7845874, 15 pp. · Zbl 1400.35215
[13] J. F. Gomez Aguilar et al., Homotopy perturbation transform method for nonlinear differential equations involving to fractional operator with exponential kernel, Advances in Difference Equations, 2017 (2017), Paper No. 68, 18 pp. · Zbl 1422.35165
[14] J. F. Gomez Aguilar, Chaos in a nonlinear Bloch system with Atangana Baleanu fractional derivatives, Numerical Methods for Partial Differential Equations, 34, 1716-1738 (2018) · Zbl 1407.78028 · doi:10.1002/num.22219
[15] C. Guillope; J. C. Saut, Global existence and one-dimensional non-linear stability of shearing motions of viscoelastic fluids of Oldroyd type, RAIRO Model, Math. Anal., 24, 369-401 (1990) · Zbl 0701.76011 · doi:10.1051/m2an/1990240303691
[16] Z. Hammouch; T. Mekkaoui, Chaos synchronization of a fractional nonautonomous system, Nonautonomous Dynamical Systems, 1, 61-71 (2014) · Zbl 1298.34093 · doi:10.2478/msds-2014-0001
[17] Z. Hammouch; T. Mekkaoui, Control of a new chaotic fractional-order system using Mittag-Leffler stability, Nonlinear Studies, 22, 565-577 (2015) · Zbl 1335.34097
[18] Z. Hammouch and T. Mekkaoui, Circuit design and simulation for the fractional-order chaotic behavior in a new dynamical system., Complex and Intelligent Systems, (2015), 1-10.
[19] T. Hayat; A. M. Siddiqui; S. Asghar, Some simple flows of an Oldroyd-B fluid, Int. J. Eng. Sci., 39, 135-147 (2001)
[20] T. Hayat; M. Khan; M. Ayub, Exact solutions of flow problems of an Oldroyd-B fluid, Appl. Math. Comput., 151, 105-119 (2004) · Zbl 1039.76001 · doi:10.1016/S0096-3003(03)00326-6
[21] M. Jamil; C. Fetecau; M. Rana, Some exact solutions for Oldroyd-B fluid due to time dependent prescribed shear stress, J. Theor. Appl. Mech., 50, 549-562 (2012)
[22] F. Jarad; T. Abdeljawad; Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana Baleanu fractional derivative, Chaos, Solitons and Fractals, 117, 16-20 (2018) · Zbl 1442.34016 · doi:10.1016/j.chaos.2018.10.006
[23] A. Karami; T. Yousefi; S. Mohebbi; C. Aghanajafi, Prediction of free convection from vertical and inclined rows of horizontal isothermal cylinders using ANFIS, Arab.J. Sci. Eng., 39, 4201-4209 (2014) · doi:10.1007/s13369-014-1094-7
[24] Y. Liu; F. Zong; J. Dai, Unsteady helical flow of a generalized Oldroyd-B fluid with fractional derivative, Int. J. Math. Trends Technology, 5, 66-76 (2014)
[25] C. F. Lorenzo; T. T. Hartley, Generalized Functions for fractional calculus, Critical Reviews in Biomedical Engineering, 36, 39-55 (2008) · doi:10.1615/CritRevBiomedEng.v36.i1.40
[26] V. Mathur; K. Khandelwal, Exact solution for the flow of Oldroyd-B fluid between coaxial cylinders, Int. J. Eng. Res. Technol. (IJERT), 3, 949-954 (2014)
[27] G. Nagaraju; J. V. Ramana Murthy, MHD flow of longitudinal and torsional oscillations of a circular cylinder with suction in a couple stress fluid, Int. J. Appl. Mech. Eng., 18, 1099-1114 (2013) · doi:10.2478/ijame-2013-0069
[28] G. Nagaraju; J. V. Ramana Murthy, MHD flow of longitudinal and torsional oscillations of a circular cylinder with suction in a couple stress fluid, Int. J. Appl. Mech. Eng., 18, 1099-1114 (2013) · Zbl 1157.76305 · doi:10.2478/ijame-2013-0069
[29] J. G. Oldroyd, On the formulation of rheological equations of state, Proc. R. Soc. Lond. A., 200, 523-541 (1950) · Zbl 0043.39504 · doi:10.1098/rspa.1950.0035
[30] J. G. Oldroyd, The motion of an elastico-viscous liquid contained between coaxial cylinders, Q. J. Mech. Appl. Math., 4, 271-282 (1951) · Zbl 0858.76010 · doi:10.1093/qjmam/4.3.271
[31] A. Rauf; A. A. Zafar; I. A. Mirza, Unsteady rotational flows of an Oldroyd-B fluid due to tension on the boundary, Alexandria Eng J, 54, 973-979 (2015) · doi:10.1016/j.aej.2015.09.001
[32] K. R. Rajagopal; P. K. Bhatnagar, Exact solutions for some simple flows of an Oldroyd-B fluid, Acta Mech., 113, 233-239 (1995) · Zbl 1381.76021 · doi:10.1007/BF01212645
[33] A. Rauf; A. A. Zafar; I. A. Mirza, Unsteady rotational flows of an Oldroyd-B fluid due to tension on the boundary, Alexandria Eng J, 54, 973-979 (2015) · doi:10.1016/j.aej.2015.09.001
[34] N. Raza, Unsteady rotational flow of a second grade fluid with non-integer caputo time fractional derivative, Punjab University Journal of Mathematics, 49, 15-25 (2017) · Zbl 1381.76021 · doi:10.1216/RMJ-1988-18-2-445
[35] N. Raza; M. Abdullah; A. Rashid Butt; A. U. Awan; E. U. Haque, Flow of a second grade fluid with fractional derivatives due to a quadratic time dependent shear stress, Alexandria Eng. J., 57, 1963-1969 (2018) · Zbl 0709.76014 · doi:10.1016/j.aej.2017.04.004
[36] M. Renardy, Inflow boundary condition forsteady flow of viscoelastic fluids with differential constitutive laws, Rocky Mount. J. Math., 18, 445-453 (1998) · Zbl 0646.76009 · doi:10.1216/RMJ-1988-18-2-445
[37] M. Renardy, An alternative approach to inflow boundary conditions for Maxwell fluids in three space dimensions, J. Non-Newtonian Fluid Mech., 36, 419-425 (1990) · Zbl 1182.26011 · doi:10.1016/0377-0257(90)85022-Q
[38] M. B. Riaz; M. I. Asjad; K. Shabbir, Analytic solutions of fractional Oldroyd-B fluid in a circular duct that applies a constant couple, Alexandria Eng. J., 55, 3267-3275 (2016) · Zbl 1426.68015 · doi:10.1016/j.amc.2017.08.048
[39] H. Rudolf; Y. Luchko; Z. Tomovski, Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives, Fract. Calc. Appl. Anal, 12, 299-318 (2009) · Zbl 1182.26011
[40] J. Singh; D. Kumar; Z. Hammouch; A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Applied Mathematics and Computation, 316, 504-515 (2018) · Zbl 0906.76007 · doi:10.1016/j.amc.2017.08.048
[41] B. Singh; N. K. Varshney, Effect of MHD visco-elastic fluid (Oldroyd) and porous medium through a circular cylinder bounded by a permeable bed, Int. J. Math. Arch., 3, 2912-2917 (2012) · doi:10.1142/S1758825110000640
[42] R. Talhouk, Unsteady flows of viscoelastic fluids with inflow and outflow boundary conditions, Appl. Math. Lett., 9, 93-98 (1996) · Zbl 0205.56402 · doi:10.1016/0893-9659(96)00080-8
[43] D. Vieru; I. Siddique, Axial flow of several non-Newtonian fluids through a circular cylinder, Int. J. Appl.Mech., 2, 543-556 (2010) · doi:10.1142/S1758825110000640
[44] N. D. Waters; M. J. King, Unsteady flow of an elastico-viscous liquid, Rheol. Acta., 93, 345-355 (1970) · Zbl 0205.56402
[45] A. A. Zafar, N. A. Shah and Niat Nigar, On some rotational flows of non-integer order rate type fluids with shear stress on the boundary, Ain Shams Eng J, 9 (2018), 1865-1876, https://www.sciencedirect.com/science/article/pii/S2090447917300138
[46] A. A. Zafar; M. B. Riaz; M. I. Asjad, Unsteady Rotational Flow of fractional Maxwell Fluid in a cylinder subject to shear stress on the boundary, Punjab University Journal of Mathematics, 50, 21-32 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.