×

Stimulated emission of relic gravitons and their super-Poissonian statistics. (English) Zbl 1418.83014

Summary: The degree of second-order coherence of the relic gravitons produced from the vacuum is super-Poissonian and larger than in the case of a chaotic source characterized by a Bose-Einstein distribution. If the initial state does not minimize the tensor Hamiltonian and has a dispersion smaller than its averaged multiplicity, the overall statistics is by definition sub-Poissonian. Depending on the nature of the sub-Poissonian initial state, the final degree of second-order coherence of the quanta produced by stimulated emission may diminish (possibly even below the characteristic value of a chaotic source) but it always remains larger than one (i.e. super-Poissonian). When the initial statistics is Poissonian (like in the case of a coherent state or for a mixed state weighted by a Poisson distribution) the degree of second-order coherence of the produced gravitons is still super-Poissonian. Even though the quantum origin of the relic gravitons inside the Hubble radius can be effectively disambiguated by looking at the corresponding Hanbury Brown-Twiss correlations, the final distributions caused by different initial states maintain their super-Poissonian character which cannot be altered.

MSC:

83C35 Gravitational waves
83C47 Methods of quantum field theory in general relativity and gravitational theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Sakharov, A. D., Zh. Eksp. Teor. Fiz.49, 345 (1965) [Sov. Phys. JETP22, 241 (1966)].
[2] L. P. Grishchuk, Sov. Phys. JETP40, 409 (1975) [Zh. Eksp. Teor. Fiz.67, 825 (1974)]; Annals N. Y. Acad. Sci.302, 439 (1977); L. H. Ford and L. Parker, Phys. Rev. D16, 1601 (1977); Phys. Rev. D16, 245 (1977).
[3] A. A. Starobinsky, JETP Lett.30, 682 (1979) [Pisma Zh. Eksp. Teor. Fiz.30, 719 (1979)]; V. A. Rubakov, M. V. Sazhin and A. V. Veryaskin, Phys. Lett. B115, 189 (1982).
[4] (Ade, P. A. R.et al.), Phys. Rev. Lett.116, 031302 (2016).
[5] J. Aasi et al., Phys. Rev. Lett.113, 231101 (2014); B. P. Abbott et al., Phys. Rev. Lett.118, 121101 (2017) [Erratum-ibid.119, 029901 (2017)].
[6] Mandel, L. and Wolf, E., Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995).
[7] R. Hanbury Brown and R. Q. Twiss, Nature178, 1046 (1956); Proc. R. Soc. Lond. A242, 300 (1957); Proc. R. Soc. Lond. A243, 291 (1958).
[8] M. Giovannini, Phys. Rev. D83, 023515 (2011); Class. Quantum Grav.34, 035019 (2017); Mod. Phys. Lett. A32, 1750191 (2017); S. Kanno and J. Soda, arXiv:1810.07604 [hep-th]; M. Giovannini, arXiv:1902.11075 [hep-th].
[9] R. J. Glauber, Phys. Rev. Lett.10, 84 (1963); E. C. Sudarshan, Phys. Rev. Lett.10, 277 (1963).
[10] A. R. Liddle and S. M. Leach, Phys. Rev. D68, 103503 (2003); M. Giovannini, Class. Quantum Grav.20, 5455 (2003); Phys. Rev. D88, 021301 (2013); Phys. Rev. D89, 123517 (2014).
[11] C. M. Caves, Phys. Rev. D23, 1693 (1981); H. P. Yuen, Phys. Rev. A13, 2226 (1976).
[12] K. Wang, L. Santos, J. Q. Xia and W. Zhao, J. Cosmol. Astropart. Phys.2017(01), 053 (2017); M. Giovannini, Phys. Rev. D88, 021301 (2013); Class. Quantum Grav.30, 015009 (2013); S. Kundu, J. Cosmol. Astropart. Phys.2012(02), 005 (2012); W. Zhao, D. Baskaran and P. Coles, Phys. Lett. B680, 411 (2009); M. Gasperini, M. Giovannini and G. Veneziano, Phys. Rev. D48, R439 (1993).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.