×

zbMATH — the first resource for mathematics

Systems of inequalities involving convex functions. (English) Zbl 0079.02002

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] N. Bourbaki, Espaces vectoriels topologiques, Chapters I, II, Paris, 1953. · Zbl 0050.10703
[2] Walter B. Carver, Systems of linear inequalities, Ann. of Math. (2) 23 (1922), no. 3, 212 – 220. · JFM 49.0166.06 · doi:10.2307/1967919 · doi.org
[3] Ky Fan, On systems of linear inequalities, Linear inequalities and related systems, Annals of Mathematics Studies, no. 38, Princeton University Press, Princeton, N.J., 1956, pp. 99 – 156. · Zbl 0072.37602
[4] J. Farkas, Theorie der einfachen Ungleichungen, J. Reine Angew. Math. vol. 124 (1902) pp. 1-27. · JFM 32.0169.02
[5] David Gale, Harold W. Kuhn, and Albert W. Tucker, Linear programming and the theory of games, Activity Analysis of Production and Allocation, Cowles Commission Monograph No. 13, John Wiley & Sons, Inc., New York, N. Y.,; Chapman & Hall, Ltd., London, 1951, pp. 317 – 329. · Zbl 0045.09709
[6] John von Neumann and Oskar Morgenstern, Theory of Games and Economic Behavior, Princeton University Press, Princeton, New Jersey, 1944. · Zbl 0063.05930
[7] H. Weyl, Elementare Theorie der konvexen Polyeder, Comment. Math. Helv. 7 (1934), no. 1, 290 – 306 (German). · JFM 61.1382.01 · doi:10.1007/BF01292722 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.