×

zbMATH — the first resource for mathematics

The decomposition of certain group representations. (English) Zbl 0166.40202

MSC:
43A60 Almost periodic functions on groups and semigroups and their generalizations (recurrent functions, distal functions, etc.); almost automorphic functions
43A65 Representations of groups, semigroups, etc. (aspects of abstract harmonic analysis)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] H. S. Bear, Some boundary properties of function algebras,Proc. Amer. Math. Soc. 11 (1960), 1–4. · Zbl 0090.09302 · doi:10.1090/S0002-9939-1960-0113152-2
[2] K. de Leeuw and I. Glicksberg, Applications of almost periodic compactifications,Acta Math. 105 (1961), 62–97. · Zbl 0104.05501
[3] N. Dunford and J. Schwartz, Linear Operators, Part I,Interscience, New York, 1958.
[4] W. F. Eberlein, Abstract ergodic theorems and weak almost periodic functions,Trans. Amer. Math. Soc. 67 (1949), 217–240. · Zbl 0034.06404 · doi:10.1090/S0002-9947-1949-0036455-9
[5] I. Glicksberg, Measures orthogonal to algebras and sets of antisymmetry,Trans. Amer. Math. Soc. 105 (1963), 415–435. · Zbl 0111.11801 · doi:10.1090/S0002-9947-1962-0173957-5
[6] A. Grothendieck, Critères de compacité dans les espaces fonctionnels généraux,Amer. Jour. Math. 74 (1952), 168–186. · Zbl 0046.11702 · doi:10.2307/2372076
[7] C. Herz, The spectral theory of bounded functions,Trans. Amer. Math. Soc. 94 (1960) 181–232. · Zbl 0090.33202 · doi:10.1090/S0002-9947-1960-0131779-3
[8] E. Hewitt, Linear functionals on almost periodic functions,Trans. Amer. Math. Soc. 74 (1953), 303–322. · Zbl 0053.08202
[9] E. Hewitt and K. Ross, Abstract Harmonic Analysis I,Grundlehren der Math. Wiss., vol. 115, Berlin 1963. · Zbl 0115.10603
[10] E. Hille, and R. S. Phillips, Functional analysis and semi-groups,Amer. Math. Soc. Colloq. Publ. 31, Providence, 1957. · Zbl 0078.10004
[11] M. A. Naimark, Normed rings,Gröningen, 1959.
[12] H. Reiter, Contributions to harmonic analysis III,J. Lond Math. Soc. 32 (1957) 477–483. · Zbl 0587.30011 · doi:10.1112/jlms/s1-32.4.477
[13] W. Rudin, Fourier Analysis on Groups,Interscience, New York, 1962. · Zbl 0107.09603
[14] J. von Neumann and I. Segal, A theorem on the representation of semisimple Lie groups,Annals of Math. 52 (1950), 509–517. · Zbl 0045.30901 · doi:10.2307/1969429
[15] A. Weil, L’integration dans les groupes topologiques et ses applications, Paris, Hermann, 1940. · Zbl 0063.08195
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.