×

Computational modeling of coupled cardiac electromechanics incorporating cardiac dysfunctions. (English) Zbl 1406.74492

Summary: Computational models have huge potential to improve our understanding of the coupled biological, electrical, and mechanical underpinning mechanisms of cardiac function and diseases. This contribution is concerned with the computational modeling of different cardiac dysfunctions related to the excitation-contraction coupling in the heart. To this end, the coupled problem of cardiac electromechanics is formulated through the conservation of linear momentum equation and the excitation equation formulated in the Eulerian setting and solved monolithically through an entirely finite element-based implicit algorithm. To model the electromechanical coupling, we use the recently proposed, novel generalized Hill model that is based on the multiplicative decomposition of the deformation gradient into the active and passive parts and on the additive split of the free energy function. This framework enables us to combine the advantageous features of the active-stress and the active-strain models suggested in literature. The proposed coupled approach is further supplemented by the Windkesel-based model to account for the pressure evolution within the ventricular chambers during the cardiac cycle. This allows us to generate the pressure-volume curves as a diagnostic tool to detect possible cardiac dysfunctions and to assess the efficiency of the heart function. The proposed model is employed to investigate different pathological cases that include infarction, eccentric hypertrophy, and concentric hypertrophy. The effects of these distinct cardiac dysfunctions on the pressure-volume curves and on the overall excitation-contraction of the heart are computationally examined and compared to the clinical observations reported in literature.

MSC:

74L15 Biomechanical solid mechanics
92C30 Physiology (general)
74F15 Electromagnetic effects in solid mechanics
92C10 Biomechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aliev, R. R.; Panfilov, A. V., A simple two-variable model of cardiac excitation, Chaos Solit. Fractals, 7, 293-301, (1996)
[2] Ambrosi, D.; Arioli, G.; Nobile, F.; Quarteroni, A., Electromechanical coupling in cardiac dynamics: the active strain approach, SIAM J. Appl. Math., 71, 605-621, (2011) · Zbl 1419.74174
[3] Ask, A.; Menzel, A.; Ristinmaa, M., Electrostriction in electro-viscoelastic polymers, Mech. Mater., 50, 9-21, (2012)
[4] Ask, A.; Menzel, A.; Ristinmaa, M., Phenomenological modeling of viscous electrostrictive polymers, Int. J. Non-Linear Mech., 47, 156-165, (2012)
[5] Beeler, G. W.; Reuter, H., Reconstruction of the action potential of ventricular myocardial fibres, J. Physiol., 268, 177-210, (1977)
[6] Burkhoff, D.; Mirsky, I.; Suga, H., Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers, Am. J. Physiol. Heart Circ. Physiol., 289, H501-H512, (2005)
[7] Cherubini, C.; Filippi, S.; Nardinocchi, P.; Teresi, L., An electromechanical model of cardiac tissue: constitutive issues and electrophysiological effects, Prog. Biophys. Mol. Biol., 97, 562-573, (2008)
[8] Clayton, R. H.; Panfilov, A. V., A guide to modelling cardiac electrical activity in anatomically detailed ventricles, Prog. Biophys. Mol. Biol., 96, 19-43, (2008)
[9] Constantino, J.; Hu, Y.; Trayanova, N. A., A computational approach to understanding the cardiac electromechanical activation sequence in the normal and failing heart, with translation to the clinical practice of crt, Prog. Biophys. Mol. Biol., 110, 372-379, (2012)
[10] Dal, H.; Göktepe, S.; Kaliske, M.; Kuhl, E., A fully implicit finite element method for bidomain models of cardiac electrophysiology, Comput. Methods Biomech. Biomed. Eng., 15, 645-656, (2012)
[11] Dal, H.; Göktepe, S.; Kaliske, M.; Kuhl, E., A fully implicit finite element method for bidomain models of cardiac electromechanics, Comput. Methods Appl. Mech. Eng., 253, 323-336, (2013) · Zbl 1297.74077
[12] Doyle, T. C.; Ericksen, J. L., Nonlinear elasticity, (Dryden, H. L.; von Kármán, T., Advances in Applied Mechanics, vol. 4, (1956), Academic Press New York), 53-116
[13] Emmanouilides, G. C.; Riemenschneider, R. A.; Allen, H. D.; Gutgesell, H. P., Moss and Adams heart disease in infants, children, and adolescents, (1994), Lippincott Williams & Wilkins
[14] Eriksson, T. S.E.; Prassl, A. J.; Plank, G.; Holzapfel, G. A., Influence of myocardial fiber/sheet orientations on left ventricular mechanical contraction, Math. Mech. Solids, 18, 592-606, (2013)
[15] Eriksson, T. S.E.; Prassl, A. J.; Plank, G.; Holzapfel, G. A., Modeling the dispersion in electromechanically coupled myocardium, Int. J. Numer. Methods Biomed. Eng., 29, 1267-1284, (2013)
[16] Fitzhugh, R., Impulses and physiological states in theoretical models of nerve induction, Biophys. J., 1, 455-466, (1961)
[17] Formaggia, L.; Quarteroni, A.; Veneziani, A., Cardiovascular mathematics: modeling and simulation of the circulatory system, (2010), Springer
[18] Go, A. S.; Mozaffarian, D.; Roger, V. L.; Benjamin, E. J.; Berry, J. D.; Borden, W. B.; Bravata, D. M.; Dai, S.; Ford, E. S.; Fox, C. S.; Franco, S.; Fullerton, H. J.; Gillespie, C.; Hailpern, S. M.; Heit, J. A.; Howard, V. J.; Huffman, M. D.; Kissela, B. M.; Kittner, S. J.; Lackland, D. T.; Lichtman, J. H.; Lisabeth, L. D.; Magid, D.; Marcus, G. M.; Marelli, A.; Matchar, D. B.; McGuire, D. K.; Mohler, E. R.; Moy, C. S.; Mussolino, M. E.; Nichol, G., Executive summary: heart disease and stroke statistics2013 update: a report from the American heart association, Circulation, 127, 143-152, (2013)
[19] Göktepe, S., Fitzhugh-Nagumo equation, Springer, (Engquist, B., To appear in Encyclopedia of Applied and Computational Mathematics, (2013))
[20] Göktepe, S.; Abilez, O. J.; Kuhl, E., A generic approach towards finite growth with examples of Athlete’s heart, cardiac dilation, and cardiac wall thickening, J. Mech. Phys. Solids, 58, 1661-1680, (2010) · Zbl 1200.74109
[21] Göktepe, S.; Abilez, O. J.; Parker, K. K.; Kuhl, E., A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis, J. Theor. Biol., 265, 433-442, (2010)
[22] Göktepe, S.; Acharya, S. N.S.; Wong, J.; Kuhl, E., Computational modeling of passive myocardium, Int. J. Numer. Methods Biomed. Eng., 27, 1-12, (2011) · Zbl 1207.92006
[23] Göktepe, S.; Kuhl, E., Computational modeling of cardiac electrophysiology: a novel finite element approach, Int. J. Numer. Methods Eng., 79, 156-178, (2009) · Zbl 1171.92310
[24] Göktepe, S.; Kuhl, E., Electromechanics of the heart: a unified approach to the strongly coupled excitation-contraction problem, Comput. Mech., 45, 227-243, (2010) · Zbl 1183.78031
[25] Göktepe, S.; Menzel, A.; Kuhl, E., The generalized Hill model: a kinematic approach towards active muscle contraction, (2013), (submitted for publication)
[26] Göktepe, S.; Menzel, A.; Kuhl, E., Micro-structurally based kinematic approaches to electromechanics of the heart, (Holzapfel, G. A.; Kuhl, E., Computer Models in Biomechanics. From Nano to Macro, (2013), Springer Science+Business Media Dordrecht), 175-187, chapter 13
[27] Göktepe, S.; Wong, J.; Kuhl, E., Atrial and ventricular fibrillation: computational simulation of spiral waves in cardiac tissue, Arch. Appl. Mech., 80, 569-580, (2010) · Zbl 1271.74319
[28] Hill, A. V., The heat of shortening and the dynamic constants of muscle, Proc. R. Soc. Lond. Ser. B Biol. Sci., 126, 136-195, (1938)
[29] Hill, A. V., First and last experiments in muscle mechanics, (1970), Cambridge University Press
[30] Hodgkin, A.; Huxley, A., A quantitative description of membrane current and its application to excitation and conduction in nerve, J. Physiol., 117, 500-544, (1952)
[31] Holzapfel, G. A.; Ogden, R. W., Constitutive modelling of passive myocardium: a structurally based framework for material characterization, Philos. Trans. Ser. A Math. Phys. Eng. Sci., 367, 3445-3475, (2009) · Zbl 1185.74060
[32] Katz, A. M., Physiology of the heart, (2011), Wolters Kluwer Health/Lippincott Williams & Wilkins Health Philadelphia, PA
[33] Keener, J. P.; Sneyd, J., Mathematical physiology, (1998), Springer New York · Zbl 0913.92009
[34] Keldermann, R.; Nash, M.; Panfilov, A., Pacemakers in a reaction-diffusion mechanics system, J. Stat. Phys., 128, 375-392, (2007) · Zbl 1115.92004
[35] Kerckhoffs, R.; Healy, S.; Usyk, T.; McCulloch, A., Computational methods for cardiac electromechanics, Proc. IEEE, 94, 769-783, (2006)
[36] Kerckhoffs, R. C.; McCulloch, A. D.; Omens, J. H.; Mulligan, L. J., Effects of biventricular pacing and scar size in a computational model of the failing heart with left bundle branch block, Med. Image Anal., 13, 362-369, (2009)
[37] Kerckhoffs, R. C.P.; Neal, M. L.; Gu, Q.; Bassingthwaighte, J. B.; Omens, J. H.; McCulloch, A. D., Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation, Ann. Biomed. Eng., 35, 1-18, (2007)
[38] Kerckhoffs, R. C.P.; Omens, J. H.; McCulloch, A. D., Mechanical discoordination increases continuously after the onset of left bundle branch block despite constant electrical dyssynchrony in a computational model of cardiac electromechanics and growth, Europace, 14, Suppl. 5, v65-v72, (2012)
[39] Klabunde, R. E., Cardiovascular physiology concepts, (2005), Lippincott Williams & Wilkins
[40] Klabunde, R. E., Cardiovascular physiology concepts, (2011), Lippincott Williams & Wilkins
[41] Kohl, P.; Hunter, P.; Noble, D., Stretch-induced changes in heart rate and rhythm: clinical observations, experiments and mathematical models, Prog. Biophys. Mol. Biol., 71, 91-138, (1999)
[42] Kröner, E., Allgemeine kontinuumstheorie der versetzungen und eigenspannungen, Arch. Ration. Mech. Anal., 4, 273-334, (1960) · Zbl 0090.17601
[43] Kumar, V.; Abbas, A. K.; Fausto, N., Robbins and cotran pathologic basis of disease, (2005), Elsevier Saunders
[44] Lafortune, P.; Ars, R.; Vázquez, M.; Houzeaux, G., Coupled electromechanical model of the heart: parallel finite element formulation, Int. J. Numer. Methods Biomed. Eng., 28, 72-86, (2012) · Zbl 1242.92015
[45] Lee, E. H., Elastic-plastic deformation at finite strain, ASME J. Appl. Mech., 36, 1-6, (1969) · Zbl 0179.55603
[46] Luo, C. H.; Rudy, Y., A model of the ventricular cardiac action potential. depolarization, repolarization, and their interaction, Circ. Res., 68, 1501-1526, (1991)
[47] Nagumo, J.; Arimoto, S.; Yoshizawa, S., An active pulse transmission line simulating nerve axon, Proc. IRE, 50, 2061-2070, (1962)
[48] Nardinocchi, P.; Teresi, L., On the active response of soft living tissues, J. Elast., 88, 27-39, (2007) · Zbl 1115.74349
[49] Nash, M. P.; Panfilov, A. V., Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias, Prog. Biophys. Mol. Biol., 85, 501-522, (2004)
[50] Nickerson, D.; Nash, M.; Nielsen, P.; Smith, N.; Hunter, P., Computational multiscale modeling in the IUPS physiome project: modeling cardiac electromechanics-author bios, Syst. Biol., 50, (2006)
[51] Niederer, S. A.; Smith, N. P., An improved numerical method for strong coupling of excitation and contraction models in the heart, Prog. Biophys. Mol. Biol., 96, 90-111, (2008)
[52] Nobile, F.; Quarteroni, A.; RuizBaier, R., An active strain electromechanical model for cardiac tissue, Int. J. Numer. Methods Biomed. Eng., 28, 52-71, (2012) · Zbl 1242.92016
[53] Noble, D., A modification of the Hodgkin-Huxley equations applicable to purkinje fibre action and pacemaker potentials, J. Physiol., 160, 317-352, (1962)
[54] Opie, L. H., Heart physiology: from cell to circulation, (2004), Lippincott Williams & Wilkins
[55] Panfilov, A. V.; Keldermann, R. H.; Nash, M. P., Self-organized pacemakers in a coupled reaction-diffusion-mechanics system, Phys. Rev. Lett., 95, (2005), 258104-1-258014-4
[56] Pelce, P.; Sun, J.; Langeveld, C., A simple model for excitation-contraction coupling in the heart, Chaos Solit. Fractals, 5, 383-391, (1995) · Zbl 0925.92052
[57] Pullan, A. J.; Buist, M. L.; Cheng, L. K., Mathematical modeling the electrical activity of the heart, (2005), World Scientific Singapore · Zbl 1120.92015
[58] Rantner, L. J.; Tice, B. M.; Trayanova, N. A., Terminating ventricular tachyarrhythmias using far-field low-voltage stimuli: mechanisms and delivery protocols, Heart Rhythm Off. J. Heart Rhythm Soc., 10, 1209-1217, (2013)
[59] Roberts, B. N.; Yang, P. C.; Behrens, S. B.; Moreno, J. D.; Clancy, C. E., Computational approaches to understand cardiac electrophysiology and arrhythmias, Am. J. Physiol. Heart Circ. Physiol., 303, H766-H783, (2012)
[60] Rossi, S.; Ruiz-Baier, R.; Pavarino, L. F.; Quarteroni, A., Orthotropic active strain models for the numerical simulation of cardiac biomechanics, Int. J. Numer. Methods Biomed. Eng., 28, 761-788, (2012)
[61] Sachse, F. B., Computational cardiology: modeling of anatomy, electrophysiology, and mechanics, (2004), Springer Verlag · Zbl 1051.92025
[62] Sainte-Marie, J.; Chapelle, D.; Cimrman, R.; Sorine, M., Modeling and estimation of the cardiac electromechanical activity, Comput. Struct., 84, 1743-1759, (2006)
[63] Stålhand, J.; Klarbring, A.; Holzapfel, G., A mechanochemical 3D continuum model for smooth muscle contraction under finite strains, J. Theor. Biol., 268, 120-130, (2011)
[64] Tusscher, K. H.W. J.T.; Panfilov, A. V., Modelling of the ventricular conduction system, Prog. Biophys. Mol. Biol., 96, 152-170, (2008)
[65] Wong, J.; Göktepe, S.; Kuhl, E., Computational modeling of electrochemical coupling: a novel finite element approach towards ionic models for cardiac electrophysiology, Comput. Methods Appl. Mech. Eng., 200, 3139-3158, (2011) · Zbl 1230.92013
[66] Wong, J.; Göktepe, S.; Kuhl, E., Computational modeling of chemo-electro-mechanical coupling: a novel implicit monolithic finite element approach, Int. J. Numer. Methods Biomed. Eng., 29, 1104-1133, (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.