×

Upper Hessenberg and Toeplitz Bohemians. (English) Zbl 1508.15020

Summary: A set of matrices with entries from a fixed finite population \(P\) is called “Bohemian”. The mnemonic comes from BOunded HEight Matrix of Integers, BOHEMI, and although the population \(P\) need not be solely made up of integers, it frequently is. In this paper we look at Bohemians, specifically those with population \(\{- 1, 0, + 1 \}\) and sometimes other populations, for instance \(\{0, 1, i, - 1, - i \}\). More, we specialize the matrices to be upper Hessenberg Bohemian. We then study the characteristic polynomials of these matrices, and their height, that is the infinity norm of the vector of monomial basis coefficients. Focusing on only those matrices whose characteristic polynomials have maximal height allows us to explicitly identify these polynomials and give useful bounds on their height, and conjecture an accurate asymptotic formula. The lower bound for the maximal characteristic height is exponential in the order of the matrix; in contrast, the height of the matrices remains constant. We give theorems about the number of normal matrices and the number of stable matrices in these families.

MSC:

15B05 Toeplitz, Cauchy, and related matrices
15B36 Matrices of integers
11C20 Matrices, determinants in number theory

Software:

OEIS
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Baez, J., The beauty of roots (2011), available at
[2] Beaucoup, F.; Borwein, P.; Boyd, D. W.; Pinner, C., Multiple roots of \([- 1, 1]\) power series, J. Lond. Math. Soc., 57, 135-147 (1998) · Zbl 0922.30004
[3] Borwein, P., Computational Excursions in Analysis and Number Theory (2012), Springer Science & Business Media
[4] Borwein, P.; Jörgenson, L., Visible structures in number theory, Am. Math. Mon., 108, 897-910 (2001) · Zbl 1160.11300
[5] Borwein, P.; Pinner, C., Polynomials with {0,+1,-1} coefficients and a root close to a given point, Can. J. Math., 49, 887-915 (1997) · Zbl 0901.11022
[6] Briat, C., Sign properties of Metzler matrices with applications, Linear Algebra Appl., 515, 53-86 (2017) · Zbl 1355.15025
[7] Cahill, N. D.; D’Errico, J. R.; Narayan, D. A.; Narayan, J. Y., Fibonacci determinants, Coll. Math. J., 33, 221-225 (2002) · Zbl 1046.11007
[8] Chan, E. Y.S., A comparison of solution methods for Mandelbrot-like polynomials (2016), Electronic Thesis and Dissertation Repository
[9] Chan, E. Y.S.; Corless, R. M., A new kind of companion matrix, Electron. J. Linear Algebra, 32, 335-342 (2017) · Zbl 1375.15012
[10] Chan, E. Y.S.; Corless, R. M., Minimal height companion matrices for Euclid polynomials, Math. Comput. Sci. (2018) · Zbl 1474.11069
[11] Chan, E. Y.S.; Corless, R. M.; Gonzalez-Vega, L.; Sendra, J. R.; Sendra, J., Algebraic linearizations of matrix polynomials, Linear Algebra Appl., 563, 373-399 (2019) · Zbl 1433.15018
[12] Corless, R. M., Generalized companion matrices in the Lagrange basis, (Proceedings EACA (2004), Universidad de Cantabria: Universidad de Cantabria Santander, Spain), 317-322
[13] R.M. Corless, P.W. Lawrence, Mandelbrot polynomials and matrices, in preparation.
[14] Corless, R. M.; Lawrence, P. W., The largest roots of the Mandelbrot polynomials, (Computational and Analytical Mathematics (2013), Springer), 305-324 · Zbl 1280.37040
[15] Corless, R. M.; Thornton, S., Visualizing eigenvalues of random matrices, ACM Commun. Comput. Algebra, 50, 35-39 (2016)
[16] Corless, R. M.; Thornton, S. E., The Bohemian eigenvalue project, ACM Commun. Comput. Algebra, 50, 158-160 (2016) · Zbl 1365.68485
[17] DeAlba, L. M., Determinants and eigenvalues, (Hogben, L., Handbook of Linear Algebra (2013), Chapman and Hall/CRC), (ch. 4)
[18] Embree, M., Pseudospectra, (Hogben, L., Handbook of Linear Algebra (2013), Chapman and Hall/CRC), (ch. 23)
[19] Fasi, M.; Porzio, G. M.N., Determinants of normalized Bohemian upper Hessenberg matrices (May 2019)
[20] Gear, C., A simple set of test matrices for eigenvalue programs, Math. Comput., 23, 119-125 (1969) · Zbl 0182.49101
[21] Hall, F. J.; Li, Z., Sign pattern matrices, (Hogben, L., Handbook of Linear Algebra (2013), Chapman and Hall/CRC), (ch. 42)
[22] Hardin, D.; Strang, G., A thousand points of light, Coll. Math. J., 21, 406-409 (1990)
[23] Higham, N., Bohemian matrices in numerical linear algebra (June 20, 2018), available at
[24] Janjic, M., Words and linear recurrences, J. Integer Seq., 21, 3 (2018) · Zbl 1384.05011
[25] Jeffries, C.; Klee, V.; Van den Driessche, P., When is a matrix sign stable?, Can. J. Math., 29, 315-326 (1977) · Zbl 0383.15005
[26] Kilic, E.; Tasci, D., On the generalized Fibonacci and Pell sequences by Hessenberg matrices, Ars Comb., 94, 161-174 (2010) · Zbl 1240.11036
[27] Lettington, M. C., Fleck’s congruence, associated magic squares and a zeta identity, Funct. Approx. Comment. Math., 45, 165-205 (2011) · Zbl 1246.11043
[28] Odlyzko, A. M., Zeros of polynomials with 0,1 coefficients, (Salvy, B., Algorithms Seminar, vol. 2130 (December 1993)), 169-172
[29] Polya, G., How to Solve It: A New Aspect of Mathematical Method (2014), Princeton University Press · Zbl 1300.00021
[30] Shattuck, M., Combinatorial proofs of determinant formulas for the Fibonacci and Lucas polynomials, Fibonacci Q., 51, 63-71 (2013) · Zbl 1281.11015
[31] Sloane, N. J.A., The on-line encyclopedia of integer sequences (a062110) (June 24, 2018), published electronically at
[32] Sloane, N. J.A., The on-line encyclopedia of integer sequences (a105306) (June 20, 2018), published electronically at
[33] Tao, T.; Vu, V., Random matrices have simple spectrum, Combinatorica, 37, 539-553 (2017) · Zbl 1399.60008
[34] Taussky, O., Matrices of rational integers, Bull. Am. Math. Soc., 66, 327-345 (1960) · Zbl 0098.03701
[35] Taussky, O., Some computational problems involving integral matrices, J. Res. Natl. Bur. Stand. B, Math. Sci., 65, 15-17 (1961) · Zbl 0097.25101
[36] Thornton, S. E., The characteristic polynomial database (Sept. 7, 2018), available at
[37] Wikipedia, Composition (combinatorics) (May 15, 2019), available at
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.