×

On high-order perturbative calculations at finite density. (English) Zbl 1354.81053

Summary: We discuss the prospects of performing high-order perturbative calculations in systems characterized by a vanishing temperature but finite density. In particular, we show that the determination of generic Feynman integrals containing fermionic chemical potentials can be reduced to the evaluation of three-dimensional phase space integrals over vacuum on-shell amplitudes – a result reminiscent of a previously proposed “naive real-time formalism” for vacuum diagrams. Applications of these rules are discussed in the context of the thermodynamics of cold and dense QCD, where it is argued that they facilitate an extension of the Equation of State of cold quark matter to higher perturbative orders.

MSC:

81V05 Strong interaction, including quantum chromodynamics
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T18 Feynman diagrams
81T28 Thermal quantum field theory
82B30 Statistical thermodynamics
85A15 Galactic and stellar structure

Keywords:

neutron stars
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] de Forcrand, P., PoS LAT, 2009, Article 010 pp. (2009)
[2] Machleidt, R.; Entem, D. R., Phys. Rep., 503, 1 (2011)
[3] Kraemmer, U.; Rebhan, A., Rep. Prog. Phys., 67, 351 (2004)
[4] Hebeler, K.; Lattimer, J. M.; Pethick, C. J.; Schwenk, A., Astrophys. J., 773, 11 (2013)
[5] Kurkela, A.; Fraga, E. S.; Schaffner-Bielich, J.; Vuorinen, A., Astrophys. J., 789, 127 (2014)
[6] Fraga, E. S.; Kurkela, A.; Vuorinen, A., Eur. Phys. J. A, 52, 3, 49 (2016)
[7] Freedman, B. A.; McLerran, L. D., Phys. Rev. D, 16, 1169 (1977)
[8] Vuorinen, A., Phys. Rev. D, 68, Article 054017 pp. (2003)
[9] Kurkela, A.; Romatschke, P.; Vuorinen, A., Phys. Rev. D, 81, Article 105021 pp. (2010)
[10] Fraga, E. S.; Romatschke, P., Phys. Rev. D, 71, Article 105014 pp. (2005)
[11] Kurkela, A.; Vuorinen, A., Phys. Rev. Lett., 117, 4, Article 042501 pp. (2016)
[12] Kajantie, K.; Laine, M.; Rummukainen, K.; Schroder, Y., Phys. Rev. D, 67, Article 105008 pp. (2003)
[13] Di Renzo, F.; Laine, M.; Miccio, V.; Schroder, Y.; Torrero, C., J. High Energy Phys., 0607, Article 026 pp. (2006)
[15] Gynther, A.; Laine, M.; Schroder, Y.; Torrero, C.; Vuorinen, A., J. High Energy Phys., 0704, Article 094 pp. (2007)
[16] Gynther, A.; Kurkela, A.; Vuorinen, A., Phys. Rev. D, 80, Article 096002 pp. (2009)
[17] Andersen, J. O.; Braaten, E.; Strickland, M., Phys. Rev. D, 62, Article 045004 pp. (2000)
[18] Dashen, R.; Ma, S. K.; Bernstein, H. J., Phys. Rev., 187, 345 (1969) · Zbl 0186.28601
[19] Bugrii, A. I.; Shadura, V. N.
[20] Frenkel, J.; Saa, A. V.; Taylor, J. C., Phys. Rev. D, 46, 3670 (1992)
[21] Laine, M.; Schroder, Y., Phys. Rev. D, 73, Article 085009 pp. (2006)
[22] Kapusta, J. I.; Gale, C., Finite-Temperature Field Theory: Principles and Applications (2006) · Zbl 1121.70002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.