×

High scale flavor alignment in two-Higgs doublet models and its phenomenology. (English) Zbl 1380.81401

Summary: The most general two-Higgs doublet model (2HDM) includes potentially large sources of flavor changing neutral currents (FCNCs) that must be suppressed in order to achieve a phenomenologically viable model. The flavor alignment ansatz postulates that all Yukawa coupling matrices are diagonal when expressed in the basis of mass-eigenstate fermion fields, in which case tree-level Higgs-mediated FCNCs are eliminated. In this work, we explore models with the flavor alignment condition imposed at a very high energy scale, which results in the generation of Higgs-mediated FCNCs via renormalization group running from the high energy scale to the electroweak scale. Using the current experimental bounds on flavor changing observables, constraints are derived on the aligned 2HDM parameter space. In the favored parameter region, we analyze the implications for Higgs boson phenomenology.

MSC:

81T60 Supersymmetric field theories in quantum mechanics
81T17 Renormalization group methods applied to problems in quantum field theory

Software:

RunDec
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
[2] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett.B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
[3] ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \[\sqrt{s}=7 \sqrt{s}=7\] and 8 TeV, JHEP08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
[4] P. Fayet, Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino, Nucl. Phys.B 90 (1975) 104 [INSPIRE]. · doi:10.1016/0550-3213(75)90636-7
[5] K. Inoue, A. Kakuto, H. Komatsu and S. Takeshita, Low-energy parameters and particle masses in a supersymmetric grand unified model, Prog. Theor. Phys.67 (1982) 1889 [INSPIRE]. · doi:10.1143/PTP.67.1889
[6] R.A. Flores and M. Sher, Higgs masses in the standard, multi-Higgs and supersymmetric models, Annals Phys.148 (1983) 95 [INSPIRE]. · doi:10.1016/0003-4916(83)90331-7
[7] J.F. Gunion and H.E. Haber, Higgs bosons in supersymmetric models. 1, Nucl. Phys.B 272 (1986) 1 [Erratum ibid.B 402 (1993) 567] [INSPIRE].
[8] L. Fromme, S.J. Huber and M. Seniuch, Baryogenesis in the two-Higgs doublet model, JHEP11 (2006) 038 [hep-ph/0605242] [INSPIRE].
[9] F. Bezrukov, M. Yu. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs boson mass and new physics, JHEP10 (2012) 140 [arXiv:1205.2893] [INSPIRE]. · doi:10.1007/JHEP10(2012)140
[10] G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP08 (2012) 098 [arXiv:1205.6497] [INSPIRE]. · doi:10.1007/JHEP08(2012)098
[11] D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP12 (2013) 089 [arXiv:1307.3536] [INSPIRE]. · doi:10.1007/JHEP12(2013)089
[12] J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, Stabilization of the electroweak vacuum by a scalar threshold effect, JHEP06 (2012) 031 [arXiv:1203.0237] [INSPIRE]. · doi:10.1007/JHEP06(2012)031
[13] O. Lebedev, On stability of the electroweak vacuum and the Higgs portal, Eur. Phys. J.C 72 (2012) 2058 [arXiv:1203.0156] [INSPIRE]. · doi:10.1140/epjc/s10052-012-2058-2
[14] G.M. Pruna and T. Robens, Higgs singlet extension parameter space in the light of the LHC discovery, Phys. Rev.D 88 (2013) 115012 [arXiv:1303.1150] [INSPIRE].
[15] R. Costa, A.P. Morais, M.O.P. Sampaio and R. Santos, Two-loop stability of a complex singlet extended Standard Model, Phys. Rev.D 92 (2015) 025024 [arXiv:1411.4048] [INSPIRE].
[16] N. Chakrabarty, U.K. Dey and B. Mukhopadhyaya, High-scale validity of a two-Higgs doublet scenario: a study including LHC data, JHEP12 (2014) 166 [arXiv:1407.2145] [INSPIRE]. · doi:10.1007/JHEP12(2014)166
[17] D. Das and I. Saha, Search for a stable alignment limit in two-Higgs-doublet models, Phys. Rev.D 91 (2015) 095024 [arXiv:1503.02135] [INSPIRE].
[18] P. Ferreira, H.E. Haber and E. Santos, Preserving the validity of the two-Higgs doublet model up to the Planck scale, Phys. Rev.D 92 (2015) 033003 [Erratum ibid.D 94 (2016) 059903] [arXiv:1505.04001] [INSPIRE].
[19] D. Chowdhury and O. Eberhardt, Global fits of the two-loop renormalized two-Higgs-doublet model with soft Z2breaking, JHEP11 (2015) 052 [arXiv:1503.08216] [INSPIRE]. · doi:10.1007/JHEP11(2015)052
[20] G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept.516 (2012) 1 [arXiv:1106.0034] [INSPIRE]. · doi:10.1016/j.physrep.2012.02.002
[21] M. Misiak and M. Steinhauser, Weak radiative decays of the B meson and bounds on MH± in the two-Higgs-doublet model, Eur. Phys. J.C 77 (2017) 201 [arXiv:1702.04571] [INSPIRE]. · doi:10.1140/epjc/s10052-017-4776-y
[22] S.L. Glashow and S. Weinberg, Natural conservation laws for neutral currents, Phys. Rev.D 15 (1977) 1958 [INSPIRE].
[23] E.A. Paschos, Diagonal neutral currents, Phys. Rev.D 15 (1977) 1966 [INSPIRE].
[24] H.E. Haber, G.L. Kane and T. Sterling, The fermion mass scale and possible effects of Higgs bosons on experimental observables, Nucl. Phys.B 161 (1979) 493 [INSPIRE]. · doi:10.1016/0550-3213(79)90225-6
[25] L.J. Hall and M.B. Wise, Flavor changing Higgs-boson couplings, Nucl. Phys.B 187 (1981) 397 [INSPIRE]. · doi:10.1016/0550-3213(81)90469-7
[26] J.F. Donoghue and L.F. Li, Properties of charged Higgs bosons, Phys. Rev.D 19 (1979) 945 [INSPIRE].
[27] V.D. Barger, J.L. Hewett and R.J.N. Phillips, New constraints on the charged Higgs sector in two Higgs doublet models, Phys. Rev.D 41 (1990) 3421 [INSPIRE].
[28] M. Aoki, S. Kanemura, K. Tsumura and K. Yagyu, Models of Yukawa interaction in the two Higgs doublet model and their collider phenomenology, Phys. Rev.D 80 (2009) 015017 [arXiv:0902.4665] [INSPIRE].
[29] A.J. Buras, M.V. Carlucci, S. Gori and G. Isidori, Higgs-mediated FCNCs: natural flavour conservation vs. minimal flavour violation, JHEP10 (2010) 009 [arXiv:1005.5310] [INSPIRE]. · Zbl 1291.81427
[30] A. Pich and P. Tuzon, Yukawa alignment in the two-Higgs-doublet model, Phys. Rev.D 80 (2009) 091702 [arXiv:0908.1554] [INSPIRE].
[31] F.J. Botella, G.C. Branco, A.M. Coutinho, M.N. Rebelo and J.I. Silva-Marcos, Natural quasi-alignment with two Higgs doublets and RGE stability, Eur. Phys. J.C 75 (2015) 286 [arXiv:1501.07435] [INSPIRE]. · doi:10.1140/epjc/s10052-015-3487-5
[32] P.M. Ferreira, L. Lavoura and J.P. Silva, Renormalization-group constraints on Yukawa alignment in multi-Higgs-doublet models, Phys. Lett.B 688 (2010) 341 [arXiv:1001.2561] [INSPIRE]. · doi:10.1016/j.physletb.2010.04.033
[33] S. Knapen and D.J. Robinson, Disentangling mass and mixing hierarchies, Phys. Rev. Lett.115 (2015) 161803 [arXiv:1507.00009] [INSPIRE]. · doi:10.1103/PhysRevLett.115.161803
[34] F.J. Botella, G.C. Branco, M. Nebot and M.N. Rebelo, Flavour changing Higgs couplings in a class of two Higgs doublet models, Eur. Phys. J.C 76 (2016) 161 [arXiv:1508.05101] [INSPIRE]. · doi:10.1140/epjc/s10052-016-3993-0
[35] G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys.B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].
[36] C.B. Braeuninger, A. Ibarra and C. Simonetto, Radiatively induced flavour violation in the general two-Higgs doublet model with Yukawa alignment, Phys. Lett.B 692 (2010) 189 [arXiv:1005.5706] [INSPIRE]. · doi:10.1016/j.physletb.2010.07.039
[37] S. Davidson and H.E. Haber, Basis-independent methods for the two-Higgs-doublet model, Phys. Rev.D 72 (2005) 035004 [Erratum ibid.D 72 (2005) 099902] [hep-ph/0504050] [INSPIRE].
[38] G.C. Branco, L. Lavoura and J.P. Silva, CP violation, Oxford University Press, Oxford U.K., (1999) [INSPIRE].
[39] H.E. Haber and D. O’Neil, Basis-independent methods for the two-Higgs-doublet model II. The significance of tan β, Phys. Rev.D 74 (2006) 015018 [Erratum ibid.D 74 (2006) 059905] [hep-ph/0602242] [INSPIRE].
[40] H.E. Haber and D. O’Neil, Basis-independent methods for the two-Higgs-doublet model III. The CP-conserving limit, custodial symmetry and the oblique parameters S, T, U, Phys. Rev.D 83 (2011) 055017 [arXiv:1011.6188] [INSPIRE].
[41] P. Minkowski, μ → eγ at a rate of one out of 109muon decays?, Phys. Lett.B 67 (1977) 421 [INSPIRE].
[42] M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf. Proc.C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].
[43] T. Yanagida, Horizontal symmetry and masses of neutrinos, Prog. Theor. Phys.64 (1980) 1103 [INSPIRE]. · doi:10.1143/PTP.64.1103
[44] R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett.44 (1980) 912 [INSPIRE]. · Zbl 1404.81306 · doi:10.1103/PhysRevLett.44.912
[45] R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev.D 23 (1981) 165 [INSPIRE].
[46] J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: the approach to the decoupling limit, Phys. Rev.D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].
[47] N. Craig, J. Galloway and S. Thomas, Searching for signs of the second Higgs doublet, arXiv:1305.2424 [INSPIRE].
[48] D.M. Asner et al., ILC Higgs white paper, in Proceedings, Community Summer Study 2013: Snowmass on the Mississippi (CSS2013), Minneapolis MN U.S.A., 29 July-6 August 2013 [arXiv:1310.0763] [INSPIRE].
[49] M. Carena, I. Low, N.R. Shah and C.E.M. Wagner, Impersonating the Standard Model Higgs boson: alignment without decoupling, JHEP04 (2014) 015 [arXiv:1310.2248] [INSPIRE]. · doi:10.1007/JHEP04(2014)015
[50] H.E. Haber, The Higgs data and the decoupling limit, in Proceedings, 1stToyama International Workshop on Higgs as a Probe of New Physics 2013 (HPNP2013), Toyama Japan, 13-16 February 2013 [arXiv:1401.0152] [INSPIRE].
[51] P.S. Bhupal Dev and A. Pilaftsis, Maximally symmetric two Higgs doublet model with natural Standard Model alignment, JHEP12 (2014) 024 [Erratum ibid.11 (2015) 147] [arXiv:1408.3405] [INSPIRE].
[52] A. Pilaftsis, Symmetries for Standard Model alignment in multi-Higgs doublet models, Phys. Rev.D 93 (2016) 075012 [arXiv:1602.02017] [INSPIRE].
[53] H.E. Haber and Y. Nir, Multiscalar models with a high-energy scale, Nucl. Phys.B 335 (1990) 363 [INSPIRE]. · doi:10.1016/0550-3213(90)90499-4
[54] J.F. Gunion and H.E. Haber, Conditions for CP-violation in the general two-Higgs-doublet model, Phys. Rev.D 72 (2005) 095002 [hep-ph/0506227] [INSPIRE].
[55] K.G. Chetyrkin, J.H. Kuhn and M. Steinhauser, RunDec: a Mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun.133 (2000)43 [hep-ph/0004189] [INSPIRE]. · Zbl 0970.81087
[56] F. Herren and M. Steinhauser, Version 3 of RunDec and CRunDec, arXiv:1703.03751 [INSPIRE]. · Zbl 07694316
[57] Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys.C 40 (2016) 100001 [INSPIRE].
[58] P. Marquard, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Quark mass relations to four-loop order in perturbative QCD, Phys. Rev. Lett.114 (2015) 142002 [arXiv:1502.01030] [INSPIRE]. · doi:10.1103/PhysRevLett.114.142002
[59] J. Bijnens, J. Lu and J. Rathsman, Constraining general two Higgs doublet models by the evolution of Yukawa couplings, JHEP05 (2012) 118 [arXiv:1111.5760] [INSPIRE]. · doi:10.1007/JHEP05(2012)118
[60] M. Jung, A. Pich and P. Tuzon, Charged-Higgs phenomenology in the aligned two-Higgs-doublet model, JHEP11 (2010) 003 [arXiv:1006.0470] [INSPIRE]. · Zbl 1294.81353 · doi:10.1007/JHEP11(2010)003
[61] ATLAS collaboration, Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector, JHEP11 (2015) 206 [arXiv:1509.00672] [INSPIRE].
[62] CMS collaboration, Summary results of high mass BSM Higgs searches using CMS run-I data, CMS-PAS-HIG-16-007, CERN, Geneva Switzerland, (2016).
[63] A. Arhrib, Higgs bosons decay into bottom-strange in two Higgs doublets models, Phys. Lett.B 612 (2005) 263 [hep-ph/0409218] [INSPIRE].
[64] G. Abbas, A. Celis, X.-Q. Li, J. Lu and A. Pich, Flavour-changing top decays in the aligned two-Higgs-doublet model, JHEP06 (2015) 005 [arXiv:1503.06423] [INSPIRE]. · doi:10.1007/JHEP06(2015)005
[65] A. Greljo, J.F. Kamenik and J. Kopp, Disentangling flavor violation in the top-Higgs sector at the LHC, JHEP07 (2014) 046 [arXiv:1404.1278] [INSPIRE]. · doi:10.1007/JHEP07(2014)046
[66] A. Arhrib, Top and Higgs flavor changing neutral couplings in two Higgs doublets model, Phys. Rev.D 72 (2005) 075016 [hep-ph/0510107] [INSPIRE].
[67] G. Eilam, J.L. Hewett and A. Soni, Rare decays of the top quark in the standard and two Higgs doublet models, Phys. Rev.D 44 (1991) 1473 [INSPIRE].
[68] B. Mele, S. Petrarca and A. Soddu, A new evaluation of the t → cH decay width in the Standard Model, Phys. Lett.B 435 (1998) 401 [hep-ph/9805498] [INSPIRE].
[69] J.A. Aguilar-Saavedra, Top flavor-changing neutral interactions: theoretical expectations and experimental detection, Acta Phys. Polon.B 35 (2004) 2695 [hep-ph/0409342] [INSPIRE].
[70] C. Zhang and F. Maltoni, Top-quark decay into Higgs boson and a light quark at next-to-leading order in QCD, Phys. Rev.D 88 (2013) 054005 [arXiv:1305.7386] [INSPIRE].
[71] ATLAS collaboration, Search for flavour-changing neutral current top quark decays t → Hq in pp collisions at \[\sqrt{s}=8 \sqrt{s}=8\] TeV with the ATLAS detector, JHEP12 (2015) 061 [arXiv:1509.06047] [INSPIRE].
[72] CMS collaboration, Search for the flavor-changing neutral current decay t → qH where the Higgs decays to bb pairs at \[\sqrt{s}=8 \sqrt{s}=8\] TeV, CMS-PAS-TOP-14-020, CERN, Geneva Switzerland, (2014).
[73] CMS collaboration, Search for top quark decays t → qH with H → γγ in pp collisions at \[\sqrt{s}=8 \sqrt{s}=8\] TeV, CMS-PAS-TOP-14-019, CERN, Geneva Switzerland, (2014).
[74] S. Gori, Three lectures of flavor and CP-violation within and beyond the Standard Model, in 2015 European School of High-Energy Physics (ESHEP 2015), Bansko Bulgaria, 2-15 September 2015 [arXiv:1610.02629] [INSPIRE].
[75] Top Quark Working Group collaboration, K. Agashe et al., Working group report: top quark, in Community Summer Study 2013: Snowmass on the Mississippi (CSS2013), Minneapolis MN U.S.A., 29 July-6 August 2013 [arXiv:1311.2028] [INSPIRE].
[76] M. Selvaggi, Perspectives for top quark physics at high-luminosity LHC, PoS(TOP2015)054 [arXiv:1512.04807] [INSPIRE].
[77] M.L. Mangano et al., Physics at a 100 TeV pp collider: Standard Model processes, arXiv:1607.01831 [INSPIRE].
[78] W. Altmannshofer, S. Gori and G.D. Kribs, A minimal flavor violating 2HDM at the LHC, Phys. Rev.D 86 (2012) 115009 [arXiv:1210.2465] [INSPIRE].
[79] CMS collaboration, Search for neutral MSSM Higgs bosons decaying into a pair of bottom quarks, JHEP11 (2015) 071 [arXiv:1506.08329] [INSPIRE].
[80] ATLAS collaboration, Search for minimal supersymmetric Standard Model Higgs bosons H/A in the τ τ final state in up to 13.3 fb−1of pp collisions at \[\sqrt{s}=13 \sqrt{s}=13\] TeV with the ATLAS detector, ATLAS-CONF-2016-085, CERN, Geneva Switzerland, (2016).
[81] CMS collaboration, Search for a neutral MSSM Higgs boson decaying into ττ at 13 TeV, CMS-PAS-HIG-16-006, CERN, Geneva Switzerland, (2016).
[82] CMS collaboration, Search for a high-mass resonance decaying into a dilepton final state in 13 fb−1of pp collisions at \[\sqrt{s}=13 \sqrt{s}=13\] TeV, CMS-PAS-EXO-16-031, CERN, Geneva Switzerland, (2016).
[83] ATLAS collaboration, Search for new high-mass resonances in the dilepton final state using proton-proton collisions at \[\sqrt{s}=13 \sqrt{s}=13\] TeV with the ATLAS detector, ATLAS-CONF-2016-045, CERN, Geneva Switzerland, (2016).
[84] ATLAS collaboration, Search for heavy Higgs bosons A/H decaying to a top-quark pair in pp collisions at \[\sqrt{s}=8 \sqrt{s}=8\] TeV with the ATLAS detector, ATLAS-CONF-2016-073, CERN, Geneva Switzerland, (2016).
[85] M. Carena, S. Gori, A. Juste, A. Menon, C.E.M. Wagner and L.-T. Wang, LHC discovery potential for non-standard Higgs bosons in the 3b channel, JHEP07 (2012) 091 [arXiv:1203.1041] [INSPIRE]. · doi:10.1007/JHEP07(2012)091
[86] BaBar collaboration, J.P. Lees et al., Evidence for an excess ofB¯→D∗τ−ν¯τ \[\overline{B}\to{D}^{\left(\ast \right)}{\tau}^-{\overline{\nu}}_{\tau }\] decays, Phys. Rev. Lett.109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].
[87] BaBar collaboration, J.P. Lees et al., Measurement of an excess ofB¯→D∗τ−ν¯τ \[\overline{B}\to{D}^{\left(\ast \right)}{\tau}^-{\overline{\nu}}_{\tau }\] decays and implications for charged Higgs bosons, Phys. Rev.D 88 (2013) 072012 [arXiv:1303.0571] [INSPIRE].
[88] LHCb collaboration, Measurement of the ratio of branching fractionsBB¯0→D∗+τ−ν¯τ/BB¯0→D∗+μ−ν¯μ \[B\left({\overline{B}}^0\to{D}^{\ast +}{\tau}^-{\overline{\nu}}_{\tau}\right)/B\left({\overline{B}}^0\to{D}^{\ast +}{\mu}^-{\overline{\nu}}_{\mu}\right) \], Phys. Rev. Lett.115 (2015) 111803 [Addendum ibid.115 (2015) 159901] [arXiv:1506.08614] [INSPIRE].
[89] Belle collaboration, M. Huschle et al., Measurement of the branching ratio ofB¯→D∗τ−ν¯τ \[\overline{B}\to{D}^{\left(\ast \right)}{\tau}^-{\overline{\nu}}_{\tau }\] relative toB¯→D∗ℓ−ν¯ℓ \[\overline{B}\to{D}^{\left(\ast \right)}{\ell}^-{\overline{\nu}}_{\ell }\] decays with hadronic tagging at Belle, Phys. Rev.D 92 (2015) 072014 [arXiv:1507.03233] [INSPIRE].
[90] Belle collaboration, A. Abdesselam et al., Measurement of the branching ratio ofB¯0→D∗+τ−ν¯τ \[{\overline{B}}^0\to{D}^{\ast +}{\tau}^-{\overline{\nu}}_{\tau }\] relative toB¯0→D∗+ℓ−ν¯ℓ \[{\overline{B}}^0\to{D}^{\ast +}{\ell}^-{\overline{\nu}}_{\ell }\] decays with a semileptonic tagging method, arXiv:1603.06711 [INSPIRE].
[91] A. Abdesselam et al., Measurement of the τ lepton polarization in the decayB¯→D∗τ−ν¯τ \[\overline{B}\to{D}^{\ast }{\tau}^-{\overline{\nu}}_{\tau } \], arXiv:1608.06391 [INSPIRE].
[92] M. Freytsis, Z. Ligeti and J.T. Ruderman, Flavor models forB¯→D∗τν¯\[ \overline{B}\to{D}^{\left(\ast \right)}\tau \overline{\nu} \], Phys. Rev.D 92 (2015) 054018 [arXiv:1506.08896] [INSPIRE].
[93] F. Mahmoudi and O. Stal, Flavor constraints on the two-Higgs-doublet model with general Yukawa couplings, Phys. Rev.D 81 (2010) 035016 [arXiv:0907.1791] [INSPIRE].
[94] Quark Flavor Physics Working Group collaboration, J.N. Butler et al., Working group report: quark flavor physics, arXiv:1311.1076 [INSPIRE].
[95] A. Bevan et al., Standard Model updates and new physics analysis with the unitarity triangle fit, arXiv:1411.7233 [INSPIRE].
[96] X.-Q. Li, J. Lu and A. Pich, Bs,d0 → ℓ+ℓ−decays in the aligned two-Higgs-doublet model, JHEP06 (2014) 022 [arXiv:1404.5865] [INSPIRE].
[97] L. Martini, Search for new physics in the B meson decays: B(s)0 → μ+μ−, Nuovo Cim.C 39 (2016) 231 [INSPIRE].
[98] C. Bobeth, M. Gorbahn, T. Hermann, M. Misiak, E. Stamou and M. Steinhauser, Bs,d → ℓ+ℓ−in the Standard Model with reduced theoretical uncertainty, Phys. Rev. Lett.112 (2014) 101801 [arXiv:1311.0903] [INSPIRE]. · doi:10.1103/PhysRevLett.112.101801
[99] W. Altmannshofer and D.M. Straub, Cornering new physics in b → s transitions, JHEP08 (2012) 121 [arXiv:1206.0273] [INSPIRE]. · doi:10.1007/JHEP08(2012)121
[100] W. Altmannshofer, P. Ball, A. Bharucha, A.J. Buras, D.M. Straub and M. Wick, Symmetries and asymmetries of B → K*μ+μ−decays in the Standard Model and beyond, JHEP01 (2009) 019 [arXiv:0811.1214] [INSPIRE]. · doi:10.1088/1126-6708/2009/01/019
[101] LHCb and CMS collaborations, Observation of the rare Bs0 → μ+μ−decay from the combined analysis of CMS and LHCb data, Nature522 (2015) 68 [arXiv:1411.4413] [INSPIRE].
[102] ATLAS collaboration, Study of the rare decays of Bs0and B0into muon pairs from data collected during the LHC run 1 with the ATLAS detector, Eur. Phys. J.C 76 (2016) 513 [arXiv:1604.04263] [INSPIRE].
[103] LHCb collaboration, Measurement of the Bs0 → μ+μ−branching fraction and effective lifetime and search for B0 → μ+μ−decays, Phys. Rev. Lett.118 (2017) 191801 [arXiv:1703.05747] [INSPIRE].
[104] CMS collaboration, Technical proposal for the phase-II upgrade of the CMS detector, CERN-LHCC-2015-010, CERN, Geneva Switzerland, (2015).
[105] Heavy Flavor Averaging Group (HFAG) collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and τ-lepton properties as of summer 2014, arXiv:1412.7515 [INSPIRE].
[106] CKMfitter Group collaboration, J. Charles et al., CP violation and the CKM matrix: assessing the impact of the asymmetric B factories, Eur. Phys. J.C 41 (2005) 1 [hep-ph/0406184] [INSPIRE].
[107] A. Crivellin, A. Kokulu and C. Greub, Flavor-phenomenology of two-Higgs-doublet models with generic Yukawa structure, Phys. Rev.D 87 (2013) 094031 [arXiv:1303.5877] [INSPIRE].
[108] G. Inguglia, Studies of dark sector and B decays involving τ at Belle and Belle II, PoS(ICHEP2016)131 [arXiv:1701.02288] [INSPIRE].
[109] J. Charles, S. Descotes-Genon, Z. Ligeti, S. Monteil, M. Papucci and K. Trabelsi, Future sensitivity to new physics in Bd, Bsand K mixings, Phys. Rev.D 89 (2014) 033016 [arXiv:1309.2293] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.