zbMATH — the first resource for mathematics

Persistent magnitude. (English) Zbl 07251293
Summary: In this paper we introduce the persistent magnitude, a new numerical invariant of (sufficiently nice) graded persistence modules. It is a weighted and signed count of the bars of the persistence module, in which a bar of the form \([a, b)\) in degree \(d\) is counted with weight \((e^{-a}-e^{-b})\) and sign \((-1)^d\). Persistent magnitude has good formal properties, such as additivity with respect to exact sequences and compatibility with tensor products, and has interpretations in terms of both the associated graded functor, and the Laplace transform.
Our definition is inspired by Otter’s notion of blurred magnitude homology: we show that the magnitude of a finite metric space is precisely the persistent magnitude of its blurred magnitude homology. Turning this result on its head, we obtain a strategy for turning existing persistent homology theories into new numerical invariants by applying the persistent magnitude. We explore this strategy in detail in the case of persistent homology of Morse functions, and in the case of Rips homology.
55N31 Persistent homology and applications, topological data analysis
51F99 Metric geometry
11A25 Arithmetic functions; related numbers; inversion formulas
Full Text: DOI
[1] Adamaszek, Michał, Clique complexes and graph powers, Isr. J. Math., 196, 1, 295-319 (2013) · Zbl 1275.05041
[2] Adamaszek, Michał; Adams, Henry, The Vietoris-Rips complexes of a circle, Pac. J. Math., 290, 1, 1-40 (2017) · Zbl 1366.05124
[3] Adamaszek, Michał; Adams, Henry; Frick, Florian; Peterson, Chris; Previte-Johnson, Corrine, Nerve complexes of circular arcs, Discrete Comput. Geom., 56, 2, 251-273 (2016) · Zbl 1354.05149
[4] Adamaszek, Michał; Adams, Henry; Reddy, Samadwara, On Vietoris-Rips complexes of ellipses, J. Topol. Anal., 11, 3, 661-690 (2019) · Zbl 1426.05182
[5] Asao, Yasuhiko, Magnitude homology of geodesic metric spaces with an upper curvature bound (2019), Preprint, available at
[6] Azumaya, Gorô, Corrections and supplementaries to my paper concerning Krull-Remak-Schmidt’s theorem, Nagoya Math. J., 1, 117-124 (1950) · Zbl 0040.01201
[7] Barceló, Juan Antonio; Carbery, Anthony, On the magnitudes of compact sets in Euclidean spaces, Am. J. Math., 140, 2, 449-494 (2018) · Zbl 1402.28004
[8] Bauer, Ulrich; Edelsbrunner, Herbert, The Morse theory of Čech and Delaunay complexes, Trans. Am. Math. Soc., 369, 5, 3741-3762 (2017) · Zbl 1360.52026
[9] Bobrowski, Omer; Borman, Matthew Strom, Euler integration of Gaussian random fields and persistent homology, J. Topol. Anal., 4, 1, 49-70 (2012) · Zbl 1260.60070
[10] Bobrowski, Omer; Kahle, Matthew, Topology of random geometric complexes: a survey, J. Appl. Comput. Topol., 1, 3-4, 331-364 (2018) · Zbl 1402.60015
[11] Botnan, Magnus Bakke; Crawley-Boevey, William, Decomposition of persistence modules, Proc. Am. Math. Soc. (2018), in press · Zbl 07243333
[12] Bubenik, Peter; Hull, Michael; Patel, Dhruv; Whittle, Benjamin, Persistent homology detects curvature, Inverse Probl., 36, 2, Article 025008 pp. (jan 2020)
[13] Bubenik, Peter; Milićević, Nikola, Homological algebra for persistence modules (2018), Preprint, available at
[14] Bubenik, Peter; Scott, Jonathan A., Categorification of persistent homology, Discrete Comput. Geom., 51, 3, 600-627 (2014) · Zbl 1295.55005
[15] Carlsson, Gunnar; Filippenko, Benjamin, Persistent homology of the sum metric, J. Pure Appl. Algebra, 224, 5, Article 106244 pp. (2020) · Zbl 1437.55007
[16] Carlsson, Gunnar; Zomorodian, Afra, The theory of multidimensional persistence, Discrete Comput. Geom., 42, 1, 71-93 (2009) · Zbl 1187.55004
[17] Chazal, Frédéric; de Silva, Vin; Glisse, Marc; Oudot, Steve, The Structure and Stability of Persistence Modules, SpringerBriefs in Mathematics (2016), Springer: Springer Cham · Zbl 1362.55002
[18] Cohen-Steiner, David; Edelsbrunner, Herbert; Harer, John, Stability of persistence diagrams, Discrete Comput. Geom., 37, 1, 103-120 (2007) · Zbl 1117.54027
[19] Crawley-Boevey, William, Decomposition of pointwise finite-dimensional persistence modules, J. Algebra Appl., 14, 5, Article 1550066 pp. (2015) · Zbl 1345.16015
[20] De Silva, Vin; Carlsson, Gunnar, Topological estimation using witness complexes, (Proceedings of the First Eurographics Conference on Point-Based Graphics. Proceedings of the First Eurographics Conference on Point-Based Graphics, SPBG’04 (2004), Aire-la-Ville: Aire-la-Ville Switzerland, Switzerland), 157-166, Eurographics Association
[21] Edelsbrunner, Herbert; Harer, John, Persistent homology—a survey, (Surveys on Discrete and Computational Geometry. Surveys on Discrete and Computational Geometry, Contemp. Math., vol. 453 (2008), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 257-282 · Zbl 1145.55007
[22] Edelsbrunner, Herbert; Harer, John L., Computational TopologyAn Introduction (2010), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1193.55001
[23] Terese Fasy, Brittany; Micka, Samuel; Millman, David L.; Schenfisch, Anna; Williams, Lucia, Challenges in reconstructing shapes from Euler characteristic curves (2018), Preprint, available at
[24] Gimperlein, Heiko; Goffeng, Marcus, On the magnitude function of domains in Euclidean space, Am. J. Math. (2017), in press
[25] Gomi, Kiyonori, Magnitude homology of geodesic space (2019), Preprint, available at · Zbl 07198817
[26] Dejan, Govc, On the definition of the homological critical value, J. Homotopy Relat. Struct., 11, 1, 143-151 (2016) · Zbl 1337.55009
[27] Gu, Yuzhou, Graph magnitude homology via algebraic Morse theory (2018), Preprint, available at
[28] Hatcher, Allen, Algebraic Topology (2002), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1044.55001
[29] Hausmann, Jean-Claude, On the Vietoris-Rips complexes and a cohomology theory for metric spaces, (Prospects in Topology. Prospects in Topology, Princeton, NJ, 1994. Prospects in Topology. Prospects in Topology, Princeton, NJ, 1994, Ann. of Math. Stud., vol. 138 (1995), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ), 175-188 · Zbl 0928.55003
[30] Heiss, Teresa; Wagner, Hubert, Streaming algorithm for Euler characteristic curves of multidimensional images, (Computer Analysis of Images and Patterns. Part I. Computer Analysis of Images and Patterns. Part I, Lecture Notes in Comput. Sci., vol. 10424 (2017), Springer: Springer Cham), 397-409
[31] Hepworth, Richard; Willerton, Simon, Categorifying the magnitude of a graph, Homol. Homotopy Appl., 19, 2, 31-60 (2017) · Zbl 1377.05088
[32] Kaneta, Ryuki; Yoshinaga, Masahiko, Magnitude homology of metric spaces and order complexes (2018), Preprint, available at
[33] Leinster, Tom, The Euler characteristic of a category, Doc. Math., 13, 21-49 (2008) · Zbl 1139.18009
[34] Leinster, Tom, The magnitude of metric spaces, Doc. Math., 18, 857-905 (2013) · Zbl 1284.51011
[35] Leinster, Tom; Meckes, Mark W., The magnitude of a metric space: from category theory to geometric measure theory, (Measure Theory in Non-smooth Spaces. Measure Theory in Non-smooth Spaces, Partial Differ. Equ. Meas. Theory (2017), De Gruyter Open: De Gruyter Open Warsaw), 156-193
[36] Leinster, Tom; Shulman, Michael, Magnitude homology of enriched categories and metric spaces (2017), Preprint, available at
[37] Leinster, Tom; Willerton, Simon, On the asymptotic magnitude of subsets of Euclidean space, Geom. Dedic., 164, 287-310 (2013) · Zbl 1272.28002
[38] Lesnick, Michael, The theory of the interleaving distance on multidimensional persistence modules, Found. Comput. Math., 15, 3, 613-650 (2015) · Zbl 1335.55006
[39] Meckes, Mark W., Positive definite metric spaces, Positivity, 17, 3, 733-757 (2013) · Zbl 1284.54043
[40] Meckes. Magnitude, Mark W., Diversity, capacities, and dimensions of metric spaces, Potential Anal., 42, 2, 549-572 (2015) · Zbl 1315.51005
[41] Milnor, J., Morse theory, (Based on Lecture Notes by M. Spivak and R. Wells. Based on Lecture Notes by M. Spivak and R. Wells, Annals of Mathematics Studies, vol. 51 (1963), Princeton University Press: Princeton University Press Princeton, N.J.)
[42] Otter, Nina, Magnitude meets persistence. Homology theories for filtered simplicial sets (2018), Preprint, available at
[43] Polterovich, Leonid; Shelukhin, Egor; Stojisavljević, Vukašin, Persistence modules with operators in Morse and Floer theory, Mosc. Math. J., 17, 4, 757-786 (2017) · Zbl 1422.53074
[44] Turner, Katharine; Mukherjee, Sayan; Boyer, Doug M., Persistent homology transform for modeling shapes and surfaces, Inf. Inference, 3, 4, 310-344 (2014) · Zbl 06840289
[45] Virk, Žiga, Rips complexes as nerves and a functorial Dowker-Nerve diagram (2019), Preprint, available at · Zbl 1412.55018
[46] Vongmasa, Pawin; Carlsson, Gunnar, Exterior critical series of persistence modules (2014), Preprint, available at
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.