Grayson, Daniel R.; Ramakrishnan, Dinakar Eisenstein series of weight one, \(q\)-averages of the \(0\)-logarithm and periods of elliptic curves. (English) Zbl 1475.11063 Akbary, Amir (ed.) et al., Geometry, algebra, number theory, and their information technology applications. Toronto, Canada, June, 2016, and Kozhikode, India, August, 2016. Cham: Springer. Springer Proc. Math. Stat. 251, 245-266 (2018). Summary: For any elliptic curve \(E\) over \(k\subset\mathbb{R}\) with \(E(\mathbb{C})=\mathbb{C}^\times /q^{\mathbb{Z}},q=e^{2\pi iz},\mathrm{Im}(z)> 0\), we study the \(q\)-average \(D_{0,q}\), defined on \(E(\mathbb{C})\), of the function \(D_0(z)=\mathrm{Im}(z/(1-z))\). Let \(\Omega^+(E)\) denote the real period of \(E\). We show that there is a rational function \(R\in\mathbb{Q}(X_1(N))\) such that for any non-cuspidal real point \(s\in X_1(N)\) (which defines an elliptic curve \(E(s)\) over \(\mathbb{R}\) together with a point \(P(s)\) of order \(N\)), \(\pi D_{0,q}(P(s))\) equals \(\Omega^+(E(s))R(s)\). In particular, if sis \(\mathbb{Q}\)-rational point of \(X_1(N)\), a rare occurrence according to Mazur, \(R(s)\) is a rational number.For the entire collection see [Zbl 1403.11002]. MSC: 11F03 Modular and automorphic functions 11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols 11G05 Elliptic curves over global fields 11G55 Polylogarithms and relations with \(K\)-theory PDF BibTeX XML Cite \textit{D. R. Grayson} and \textit{D. Ramakrishnan}, Springer Proc. Math. Stat. 251, 245--266 (2018; Zbl 1475.11063) Full Text: DOI arXiv OpenURL References: [1] N. H. Abel, Untersuchungen über die Reihe:\(1 + {m \over 1} \cdot x + { m \cdot (m-1) \over 1 \cdot 2} \cdot x^2 + {m \cdot (m-1) \cdot (m-2) \over 1 \cdot 2 \cdot 3 } \cdot x^3 + \cdots{u.s.w.} \), Journal für Math. (1826), 311-339. [2] A. Beilinson, Applications of Algebraic K-theory to Algebraic Geometry and Number Theory, Part I, Contemporary Mathematics, vol. 55, part I, American Math. Soc., 1986, pp. 1-34. [3] Spencer J. Bloch, Higher regulators, algebraic \(K\)-theory, and zeta functions of elliptic curves, Amer. Math. Soc., Providence, 2000. · Zbl 0958.19001 [4] S. Bloch and D. Grayson, Applications of Algebraic K-theory to Algebraic Geometry and Number Theory, Part I, Contemporary Mathematics, vol. 55, Amer. Math. Soc., Providence, 1983, pp. 79-88. [5] C. Breuil, B. Conrad, F. Diamond and R. Taylor, On the modularity of elliptic curves over \(\mathbb{Q} \): wild \(3\)-adic exercises, J. Amer. Math. Soc. 14 (2001), 843-939. · Zbl 0982.11033 [6] E. Cahen, Sur la fonction \(\zeta (s)\) de Riemann et sur des fonctions analogues, Ann. de l’École Normale 11 (ser. 3) (1894), 75-164 . · JFM 25.0702.01 [7] P. Deligne, N. Rapoport, Modular functions of One Variable II, Lecture Notes in Mathematics, vol. 349, Springer-Verlag, Berlin, Heidelberg, New York. [8] C. Deninger, Higher Regulators and Hecke \(L\)-series of imaginary quadratic fields: I, Inventiones Mathematicae 96 (1989), 1-69. · Zbl 0721.14004 [9] V. G. Drinfeld, Two theorems on modular curves, Funktsionalnii anal. i evo Prilozhenie 2 (1973), 83-84. [10] E. Hecke, Darstellung von Klassenzahlen als Perioden von Integralen 3. Gattung aus dem Gebiet der elliptischen Modulfunctionen, Abhandlungen aus dem Mathematischen Seminar der Hamburgische Universität 4 (1925), 211-223. · JFM 52.0378.01 [11] E. Hecke, Theorie der Eisensteinschen Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik, Abhandlungen aus dem Mathematischen Seminar der Hamburgische Universität 5 (1927), 199-224. · JFM 53.0345.02 [12] N. Katz, \(p\)-adic interpolation of real analytic Eisenstein series, Annals of Mathematics 104 (1976), 459. · Zbl 0354.14007 [13] N. Katz, The Eisenstein measure and p-adic interpolation, American Journal of Mathematics 99 (1977), 238-311. · Zbl 0375.12022 [14] N. Katz, \(p\)-adic \(L\)-functions for CM-fields, Inventiones Mathematicae 49 (1978). · Zbl 0417.12003 [15] N. Katz and B. Mazur, Arithmetic moduli of elliptic curves, Annals of Math. Studies 108 (1985), 1-514. · Zbl 0576.14026 [16] V. Kolyvagin, Finiteness of \(E(\mathbb{Q})\) and \({Sh}(E,\mathbb{Q})\) for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), 522-540, 670-671. [17] D. Kubert, Universal bounds on the torsion of elliptic curves, Proc. London Math. Soc. 33 (1976), 193-237. · Zbl 0331.14010 [18] S. Lang, Introduction to Modular Forms, Grundlehren der mathematischen Wissenschaften, Springer Verlag, Berlin, Heidelberg, New York, 1976. [19] B. Mazur, Rational Isogenies of prime degree, Inventiones Mathematicae 44 (1978), 129-162. · Zbl 0386.14009 [20] J.-F. Mestre and N. Schappacher, Séries de Kronecker et fonctions \(L\) des puissances symétriques de courbes elliptiques sur \(\mathbb{Q} \), Arithmetic Algebraic Geometry (proceedings of a conference on Texel Island, April, 1989) (G. van der Geer, F. Oort, and J. Steenbrink, eds.), Progress in Mathematics, vol. 89, Birkhäuser, Boston, Basel, Berlin, 1991, pp. 209-246, [516.35 Ar462]. [21] D. Ramakrishnan, Analogs of the Bloch-Wigner function for higher polylogarithms, Applications of Algebraic K-theory to Algebraic Geometry and Number Theory, Part I, Proceedings of a Summer Research Conference held June 12-18, 1983, in Boulder, Colorado, Contemporary Mathematics 55, American Mathematical Society, Providence, Rhode Island, pp. 371-376. [22] B. Schoeneberg, Elliptic Modular Functions(1974), Springer, Berlin, Heidelberg, New York. · Zbl 0285.10016 [23] G. Shimura, Introduction to the arithmetic theory of automorphic functions(1971), Iwanami Shoten, Publishers, and Princeton University Press. · Zbl 0221.10029 [24] J. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics 106, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1986. · Zbl 0585.14026 [25] R. Taylor and A. Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) 141 (1995), 553-572. · Zbl 0823.11030 [26] A. Weil, Elliptic Functions according to Eisenstein and Kronecker, Ergebnisse series 88, Springer, Berlin, Heidelberg, New York, 1976. · Zbl 0318.33004 [27] A. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995), 443-551. · Zbl 0823.11029 [28] D. Zagier, Polylogarithms, Dedekind Zeta functions and the algebraic \(K\)-theory of fields, Progress in Math. 89 (1991), 391-430 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.