Grayson, Daniel R. Projective modules equipped with a metric over the rings of integers of number fields. (Modules projectifs munis d’une métrique sur les anneaux d’entiers de corps de nombres.) (French) Zbl 0905.19002 C. R. Acad. Sci., Paris, Sér. I 309, No. 9, 573-575 (1989). Summary: We show that the spectrum of a number ring, when compactified by equipping its projective modules with metrics, still behaves like a Dedekind domain as far as its Grothendieck group is concerned. MSC: 19A31 \(K_0\) of group rings and orders 11R70 \(K\)-theory of global fields 13F05 Dedekind, Prüfer, Krull and Mori rings and their generalizations 14C22 Picard groups Keywords:spectrum of number ring; projective modules; metrics; Dedekind domain; Grothendieck group PDF BibTeX XML Cite \textit{D. R. Grayson}, C. R. Acad. Sci., Paris, Sér. I 309, No. 9, 573--575 (1989; Zbl 0905.19002) OpenURL