×

Canonical complex extensions of Kähler manifolds. (English) Zbl 1442.32031

Summary: Given a complex manifold \(X\), any Kähler class defines an affine bundle over \(X\), and any Kähler form in the given class defines a totally real embedding of \(X\) into this affine bundle. We formulate conditions under which the affine bundles arising this way are Stein and relate this question to other natural positivity conditions on the tangent bundle of \(X\). For compact Kähler manifolds of non-negative holomorphic bisectional curvature, we establish a close relation of this construction to adapted complex structures in the sense of Lempert-Szőke and to the existence question for good complexifications in the sense of Totaro. Moreover, we study projective manifolds for which the induced affine bundle is not just Stein but affine and prove that these must have big tangent bundle. In the course of our investigation, we also obtain a simpler proof of a result of Yang on manifolds having non-negative holomorphic bisectional curvature and big tangent bundle.

MSC:

32Q15 Kähler manifolds
32J27 Compact Kähler manifolds: generalizations, classification
53C55 Global differential geometry of Hermitian and Kählerian manifolds
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] D. N.Akhiezer, Lie group actions in complex analysis, Aspects of Mathematics 27 (Vieweg+Teubner, Wiesbaden, 1995). · Zbl 0845.22001
[2] M. F.Atiyah, ‘Complex analytic connections in fibre bundles’, Trans. Amer. Math. Soc.85 (1957) 181-207. · Zbl 0078.16002
[3] A.Beauville, ‘Variétés Kähleriennes dont la première classe de Chern est nulle’, J. Differential Geom.18 (1983) 755-782. · Zbl 0537.53056
[4] A.Beauville, ‘Some remarks on Kähler manifolds with \(c_1 = 0\)’, Classification of algebraic and analytic manifolds, Progress in Mathematics 39 (ed. K.Ueno (ed.); Birkhäuser, Basel, 1983) 1-26. · Zbl 0537.53057
[5] C.Birkenhake and H.Lange, Complex Abelian varieties, 2nd edn, Grundlehren der mathematischen Wissenschaften 302 (Springer, Berlin, 2004). · Zbl 1056.14063
[6] I.Biswas, J.Hurtubise and A. K.Raina, ‘Rank one connections on Abelian varieties’, Internat. J. Math.22 (2011) 1529. · Zbl 1235.14039
[7] I.Biswas and M. L.Wong, ‘The universal connection for principal bundles over homogeneous spaces and twistor space of coadjoint orbits’, Doc. Math.23 (2018) 77-115. · Zbl 1423.14283
[8] S.Boucksom, ‘Divisorial Zariski decompositions on compact complex manifolds’, Ann. Sci. Éc. Norm. Super. (4)37 (2004) 45-76. · Zbl 1054.32010
[9] T.Bröcker and T.tomDieck, Representations of compact Lie groups, Graduate Texts in Mathematics 98 (Springer, Berlin, 1985). · Zbl 0581.22009
[10] R.Bryant, ‘MathOverflow post’, July 2, 2014. https://mathoverflow.net/questions/173108/analytic-representatives-for-kahler-classes
[11] D.Burns, ‘Curvatures of Monge‐Ampère foliations and parabolic manifolds’, Ann. of Math. (2)115 (1982) 349-373. · Zbl 0507.32011
[12] F.Campana, J.‐P.Demailly and Th.Peternell, ‘Rationally connected manifolds and semipositivity of the Ricci curvature’, Recent advances in algebraic geometry, London Mathematical Society Lecture Note Series 417 (eds C. D.Hacon (ed.), M.Mustată (ed.) and M.Popa (ed.); Cambridge University Press, Cambridge, 2015) 71-91. · Zbl 1369.53052
[13] F.Campana and T.Peternell, ‘Projective manifolds whose tangent bundles are numerically effective’, Math. Ann.289 (1991) 169-187. · Zbl 0729.14032
[14] F.Campana and J.Winkelmann, ‘On the \(h\)‐principle and specialness for complex projective manifolds’, Algebr. Geom.2 (2015) 298-314. · Zbl 1327.32020
[15] J.Cao, ‘Albanese maps of projective manifolds with nef anticanonical bundles’, arXiv:1612.05921 [math.AG], to appear in Annales Scientifiques de l’École Normale Supérieure. · Zbl 1442.32026
[16] H.Cartan, ‘Variétés analytiques réelles et variétés analytiques complexes’, Bull. Soc. Math. France85 (1957) 77-99. · Zbl 0083.30502
[17] N.Chriss and V.Ginzburg, Representation theory and complex geometry (Birkhäuser, Basel, 1997). · Zbl 0879.22001
[18] J.‐P.Demailly, ‘Complex analytic and differential geometry’, version of June 21, 2012. https://www-fourier.ujf-grenoble.fr/ demailly/manuscripts/agbook.pdf
[19] J.‐P.Demailly, T.Peternell and M.Schneider, ‘Compact complex manifolds with numerically effective tangent bundles’, J. Algebraic Geom.3 (1994) 295-345. · Zbl 0827.14027
[20] S. K.Donaldson, ‘Holomorphic discs and the complex Monge-Ampère equation’, J. Symplectic Geom.1 (2002) 171-196. · Zbl 1035.53102
[21] B.Feix, ‘Hyperkähler metrics on cotangent bundles’, J. reine angew. Math.532 (2001) 33-46. · Zbl 0976.53049
[22] R.Friedman, Algebraic surfaces and holomorphic vector bundles, Universitext (Springer, Berlin, 1998). · Zbl 0902.14029
[23] S. I.Goldberg and S.Kobayashi, ‘Holomorphic bisectional curvature’, J. Differential Geom.1 (1967) 225-233. · Zbl 0169.53202
[24] J. E.Goodman, ‘Affine open subsets of algebraic varieties and ample divisors’, Ann. of Math. (2)89 (1969) 160-183. · Zbl 0159.50504
[25] H.Grauert, ‘On Levi’s problem and the imbedding of real‐analytic manifolds’, Ann. of Math. (2)68 (1958) 460-472. · Zbl 0108.07804
[26] V.Guillemin and M.Stenzel, ‘Grauert tubes and the homogeneous Monge‐Ampère equation’, J. Differential Geom.34 (1991) 561-570. · Zbl 0746.32005
[27] R. C.Gunning and H.Rossi, Analytic functions of several complex variables (Prentice‐Hall, Upper Saddle River, NJ, 1965). · Zbl 0141.08601
[28] R.Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Mathematics 156 (Springer, 1970). · Zbl 0208.48901
[29] R.Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52 (Springer, Berlin, 1977). · Zbl 0367.14001
[30] S.Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics (Academic Press, Cambridge, MA, 1978). · Zbl 0451.53038
[31] N.Hitchin, ‘Higgs bundles and diffeomorphism groups’, Preprint, 2015, arXiv:1501.04989 [math.DG]. · Zbl 1391.53061
[32] J.‐C.Hsiao, ‘A remark on bigness of the tangent bundle of a smooth projective variety and \(D\)‐simplicity of its section rings’, J. Algebra Appl.14 (2015) 1550098 (10 pages). · Zbl 1334.13021
[33] J. E.Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics 9 (Springer, New York-Berlin, 1978). · Zbl 0447.17001
[34] K.Jabbusch, ‘Positivity of cotangent bundles’, Michigan Math. J.58 (2009) 723-744. · Zbl 1186.14037
[35] D.Kaledin, ‘A canonical hyperkaehler metric on the total space of a cotangent bundle’, Quaternionic structures in mathematics and physics (eds S.Marchiafava (ed.), P.Piccinni (ed.) and M.Pontecorvo (ed.); World Scientific, Singapore, 1999) 195-230. · Zbl 1035.53063
[36] Y.Kawamata, K.Matsuda and K.Matsuki, ‘Introduction to the minimal model problem’, Algebraic geometry, Advanced Studies in Pure Mathematics 10 (ed. T. Oda; North‐Holland, Amsterdam, 1987) 283-360. · Zbl 0672.14006
[37] R. S.Kulkarni, ‘On complexifications of differentiable manifolds’, Invent. Math.44 (1978) 49-64. · Zbl 0375.32007
[38] R.Lazarsfeld, Positivity in algebraic geometry I and II, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge 49 (Springer, Berlin, 2004). · Zbl 1066.14021
[39] L.Lempert, ‘Isometries in spaces of Kähler potentials’, Preprint, 2017, arXiv:1702.05937 [math.CV].
[40] L.Lempert and R.Szőke, ‘Global solutions of the homogeneous complex Monge-Ampere equation and complex structures on the tangent bundle of Riemannian manifolds’, Math. Ann.290 (1991) 689-712. · Zbl 0752.32008
[41] Y.Matsushima and A.Morimoto, ‘Sur certains espace fibrés holomorphes sur une variété de Stein’, Bull. Soc. math. France88 (1960) 137-155. · Zbl 0094.28104
[42] N.Mok, ‘The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature’, J. Differential Geom.27 (1988) 179-214. · Zbl 0642.53071
[43] S. B.Myers and N. E.Steenrod, ‘The group of isometries of a Riemannian manifold’, Ann. of Math. (2)40 (1939) 400-416. · JFM 65.1415.03
[44] R.Narasimhan, Analysis on real and complex manifolds, North‐Holland Mathematical Library (Elsevier Science, Amsterdam, 1968). · Zbl 0188.25803
[45] A.Neeman, ‘Steins, affines and Hilbert’s fourteenth problem’, Ann. of Math. (2)127 (1988) 229-244. · Zbl 0685.14002
[46] R.Nirenberg and R. O.Wells, Jr, ‘Approximation theorems on differentiable submanifolds of a complex manifold’, Trans. Amer. Math. Soc.142 (1969) 15-35. · Zbl 0188.39103
[47] A. L.Onishchik and È. B.Vinberg, Lie groups and algebraic groups (Springer, Berlin, 1990). (Translated from the Russian by D. A. Leites, Springer Series in Soviet Mathematics.) · Zbl 0722.22004
[48] S.Semmes, ‘Complex Monge-Ampère and symplectic manifolds’, Amer. J. Math.114 (1991) 495-550. · Zbl 0790.32017
[49] H. B.Shutrick, ‘Complex extensions’, Q. J. Math. (2)9 (1958) 189-201. · Zbl 0093.35401
[50] R.Szőke, ‘Complex structures on tangent bundles of Riemannian manifolds’, Math. Ann.291 (1991) 409-428. · Zbl 0749.53021
[51] R.Szőke, ‘Adapted complex structures and Riemannian homogeneous spaces’, Ann. Polon. Math.70 (1998) 215-220. · Zbl 0966.53038
[52] B.Totaro, ‘Complexifications of nonnegatively curved manifolds’, J. Eur. Math. Soc.5 (2003) 69-94. · Zbl 1040.32006
[53] C.Voisin, Hodge theory and complex algebraic geometry I, Cambridge Studies in Advanced Mathematics 76 (Cambridge University Press, Cambridge, 2002). · Zbl 1005.14002
[54] H.Whitney and F.Bruhat, ‘Quelques propriétés fondamentales des ensembles analytiques‐réels’, Comment. Math. Helv.33 (1959) 132-160. · Zbl 0100.08101
[55] X.Yang, ‘Big vector bundles and complex manifolds with semi‐positive tangent bundles’, Math. Ann.367 (2017) 251-282. · Zbl 1377.53095
[56] Y.Zhang, ‘Review of the cohomology of compact Lie groups’. www.nbi.dk/ zhang/notes/Cohomology
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.