×

Communication strength of correlations violating monogamy relations. (English) Zbl 1337.81025

Summary: In any theory satisfying the no-signaling principle correlations generated among spatially separated parties in a Bell-type experiment are subject to certain constraints known as monogamy relations. Recently, in the context of the black hole information loss problem it was suggested that these monogamy relations might be violated. This in turn implies that correlations arising in such a scenario must violate the no-signaling principle and hence can be used to send classical information between parties. Here, we study the amount of information that can be sent using such correlations. To this aim, we first provide a framework associating them with classical channels whose capacities are then used to quantify the usefulness of these correlations in sending information. Finally, we determine the minimal amount of information that can be sent using signaling correlations violating the monogamy relation associated to the chained Bell inequalities.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
81P15 Quantum measurement theory, state operations, state preparations
81P05 General and philosophical questions in quantum theory
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
94A40 Channel models (including quantum) in information and communication theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Masanes, L., Acín, A., Gisin, N.: General properties of nonsignaling theories. Phys. Rev. A 73, 012112 (2006) · doi:10.1103/PhysRevA.73.012112
[2] Barrett, J.: Information processing in generalized probabilistic theories. Phys. Rev. A 75, 032304 (2007) · doi:10.1103/PhysRevA.75.032304
[3] Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014) · doi:10.1103/RevModPhys.86.419
[4] Popescu, S., Rohrlich, D.: Quantum nonlocality as an axiom. Found. Phys. 24, 379 (1994) · doi:10.1007/BF02058098
[5] Pawłowski, M., Paterek, T., Kaszlikowski, D., Scarani, V., Winter, A., Żukowski, M.: Information causality as a physical principle. Nature 461, 1101 (2009) · doi:10.1038/nature08400
[6] Navascués, M., Wunderlich, H.: A glance beyond the quantum model. Proc. Roy. Soc. A 466, 881 (2010) · Zbl 1195.81010 · doi:10.1098/rspa.2009.0453
[7] Fritz, T., Sainz, A.B., Augusiak, R., Brask, J.B., Chaves, R., Leverrier, A., Acín, A.: Local orthogonality as a multipartite principle for quantum correlations. Nat. Commun. 4, 2263 (2013) · doi:10.1038/ncomms3263
[8] Navascués, M., Guryanova, Y., Hoban, M.J., Acín, A.: Almost quantum correlations. Nat. Commun. 6, 6288 (2015) · doi:10.1038/ncomms7288
[9] Toner, B.: Monogamy of non-local quantum correlations. Proc. R. Soc. A 465, 59 (2009) · Zbl 1186.81012 · doi:10.1098/rspa.2008.0149
[10] Pawłowski, M., Brukner, C.: Monogamy of Bells inequality violations in nonsignaling theories. Phys. Rev. Lett. 102, 030403 (2009) · doi:10.1103/PhysRevLett.102.030403
[11] Augusiak, R., Demianowicz, M., Pawłowski, M., Tura, J., Acín, A.: Elemental and tight monogamy relations in nonsignaling theories. Phys. Rev. A 90, 052323 (2014) · doi:10.1103/PhysRevA.90.052323
[12] Ramanathan, R., Horodecki, P.: Strong monogamies of no-signaling violations for bipartite correlation Bell inequalities. Phys. Rev. Lett. 113, 210403 (2014) · doi:10.1103/PhysRevLett.113.210403
[13] Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969) · Zbl 1371.81014 · doi:10.1103/PhysRevLett.23.880
[14] Braunstein, S.L., Caves, C.M.: Wringing out better Bell inequalities. Ann. Phys. 202, 22 (1990) · Zbl 0959.81505 · doi:10.1016/0003-4916(90)90339-P
[15] Barrett, J., Hardy, L., Kent, A.: No signaling and quantum key distribution. Phys. Rev. Lett 95, 010503 (2005) · doi:10.1103/PhysRevLett.95.010503
[16] Colbeck, R., Renner, R.: Free randomness can be amplified. Nat. Phys. 8, 450 (2012) · doi:10.1038/nphys2300
[17] Gallego, R., Masanes, L., de la Torre, G., Dhara, C., Aolita, L., Acín, A.: Full randomness from arbitrarily deterministic events. Nat. Commun. 4, 2654 (2013) · doi:10.1038/ncomms3654
[18] Brandão, F.G.S.L., Ramanathan, R., Grudka, A., Horodecki, K., Horodecki, M., Horodecki, P.: Robust device-independent randomness amplification with few devices. arXiv:1310.4544 · Zbl 1390.94820
[19] Almheiri, A., Marolf, D., Polchinski, J., Sully, J.: Black holes: complementarity or firewalls? JHEP 02, 062 (2013) · Zbl 1342.83121 · doi:10.1007/JHEP02(2013)062
[20] Oppenheim, J., Unruh, B.: Firewalls and flat mirrors: an alternative to the AMPS experiment which evades the Harlow-Hayden obstacle. JHEP 03, 120 (2014) · doi:10.1007/JHEP03(2014)120
[21] Preskill, J., Lloyd, S.: Unitarity of black hole evaporation in final-state projection models, JHEP 08, 126 (2014)
[22] Grudka, A., Hall, M.J.W., Horodecki, M., Horodecki, R., Oppenheim, J., Smolin, J.: arXiv:1506.07133
[23] Horowitz, G.T., Maldacena, J.: The black hole final state. JHEP 02, 008 (2004) · doi:10.1088/1126-6708/2004/02/008
[24] Moser, S.M.: Error probability analysis of binary asymmetric channels, final report of NSC project ‘Finite Blocklength Capacity’, http://moser-isi.ethz.ch/docs/papers/smos-2012-4.pdf
[25] Shannon, C.E.: Collected Papers. Wiley-IEEE Press, New York (1993) · Zbl 0846.01022
[26] Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Urbana (1949)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.