×

Optimal control of stochastic fluctuations in biochemical reactions. (English) Zbl 1342.92085

Summary: Different experimental conditions can give rise to changes in rate constants of biochemical reactions, thus resulting in different stochastic fluctuations in the numbers of chemical species molecules. A naturally arising question is how to choose a set of reaction rate constants such that experiment-depending stochastic fluctuations can be optimally controlled. In this paper, we determine the optimal rate constants by optimally controlling stochastic fluctuations in the numbers of chemical species molecules based on the theory of continuous-time Markov decision processes. Specifically, we first propose a stochastic model for a coupled set of biochemical reactions, then solve an optimality problem for rate constants with the mean-maximal numbers of chemical species molecules, and finally find, using a policy iteration algorithm of the continuous-time Markov decision processes, optimal rate constants with the variance-minimal molecule numbers over all possible sets of the rate constants with the maximal-mean molecule numbers obtained.

MSC:

92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
49N90 Applications of optimal control and differential games
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] N. G. Van Kampen , Stochastic Processes in Physics and Chemistry ( North-Holland , Netherlands , 1992 ) . · Zbl 0511.60038
[2] J. Hasty, Chaos 11, 207 (2001), DOI: 10.1063/1.1345702. genRefLink(16, ’rf2’, ’10.1063
[3] T. S. Zhou, L. N. Chen and K. Aihara, Phys. Rev. Lett. 95(1-4), 178103 (2005), DOI: 10.1103/PhysRevLett.95.178103. genRefLink(16, ’rf3’, ’10.1103
[4] T. S. Zhou, PLoS ONE 2, 1 (2007).
[5] P. Johan, Nature 427, 415 (2004). genRefLink(128, ’rf5’, ’000188470500035’);
[6] P. S. Swain, M. B. Elowitz and E. D. Siggia, Proc. Natl. Acad. Sci. 99, 12795 (2002), DOI: 10.1073/pnas.162041399. genRefLink(16, ’rf6’, ’10.1073
[7] J. M. Cai, R. H. Liu and F. Shen, Solid State Sci. 10, 226 (2008), DOI: 10.1016/j.solidstatesciences.2007.07.034. genRefLink(16, ’rf7’, ’10.1016
[8] K. A. Connors , Chemical Kinetics: The Study of Reaction Rates in Solution ( Wiley-VCH , 1990 ) .
[9] W. B. DeMore and E. W. Wilson, J. Phys. Chem. A 103, 573 (1999), DOI: 10.1021/jp9835521. genRefLink(16, ’rf9’, ’10.1021
[10] H. T. Wang, Y. J. Zhang and Y. J. Mu, J. Environ. Sci. 19, 641 (2007), DOI: 10.1016/S1001-0742(07)60106-5. genRefLink(16, ’rf10’, ’10.1016
[11] Wolkenhauer O., Systems Biology, preprint, 2006 . · Zbl 1309.92011
[12] A. Datta, M. L. Bittner and E. R. Dougherty, Mach. Learn. 52, 169 (2003), DOI: 10.1023/A:1023909812213. genRefLink(16, ’rf12’, ’10.1023
[13] A. Datta, R. Pal and E. R. Dougherty, Curr. Bioinformatics 1, 167 (2006), DOI: 10.2174/157489306777011978. genRefLink(16, ’rf13’, ’10.2174
[14] P. C. Y. Chen and J. W. Chen, BioSystems 90, 535 (2007), DOI: 10.1016/j.biosystems.2006.12.005. genRefLink(16, ’rf14’, ’10.1016
[15] Y. Morishita, T. J. Kobayashi and K. Aihara, Biophys. J. 91, 2072 (2006), DOI: 10.1529/biophysj.105.070797. genRefLink(16, ’rf15’, ’10.1529
[16] M. Folić, C. S. Adjiman and E. N. Pistikopoulos, AIChE J. 53, 1240 (2007), DOI: 10.1002/aic.11146. genRefLink(16, ’rf16’, ’10.1002
[17] E. Johan and E. Más, Genome Res. 13, 2475 (2003). genRefLink(128, ’rf17’, ’000186357000014’);
[18] P. Johan, Phys. Life Rev. 2, 157 (2005). genRefLink(128, ’rf18’, ’000248041800003’);
[19] X. P. Guo and O. Hernández-Lerma, IEEE Trans. Automat. Contr. 48, 236 (2003). genRefLink(128, ’rf19’, ’000181099700005’);
[20] X. P. Guo, O. Hernández-Lerma and T. Prieto-Rumeau, Top 14, 177 (2006), DOI: 10.1007/BF02837562. genRefLink(16, ’rf20’, ’10.1007
[21] Guo X. P., Hernández-Lerma O., Continuous-time Markov Decision Processes: Theory and Applications, preprint, 2008 .
[22] W. J. Anderson , Continuous-time Markov Chains ( Springer-Verlag , New York , 1991 ) . genRefLink(16, ’rf22’, ’10.1007 · Zbl 0731.60067
[23] M. P. Juan and P. Johan, Science 319, 339 (2008). genRefLink(128, ’rf23’, ’000252436200041’);
[24] D. T. Gilespie, J. Phys. Chem. 81, 2340 (1977), DOI: 10.1021/j100540a008. genRefLink(16, ’rf24’, ’10.1021
[25] B. E. Arren, Nature 38, 636 (2006). genRefLink(128, ’rf25’, ’000237954800016’);
[26] X. P. Guo and X. R. Cao, SIAM J. Control Optim. 44, 29 (2005), DOI: 10.1137/S0363012903420875. genRefLink(16, ’rf26’, ’10.1137
[27] A. Kuznetsov, M. Kern and N. Kopell, Siam J. Appl. Math. 65, 392 (2004), DOI: 10.1137/S0036139903436029. genRefLink(16, ’rf27’, ’10.1137
[28] Z. Szallasi , J. Stelling and V. Periwal , System Modeling in Cellular Biology ( The MIT Press , Bostan , 2006 ) . genRefLink(16, ’rf28’, ’10.7551 · Zbl 1274.92012
[29] Q. S. Yang , Molecular Biology ( Zhejiang University Press , 2005 ) .
[30] M. L. Littman , T. L. Dean and L. P. Kaelbling , On the complexity of solving Markov decision problems , Proceeding of the Eleventh International Conference on Uncertainty in Artificial Intelligence ( 1995 ) .
[31] C. H. Papadimitriou and J. N. Tsitsikis, Math. Meth. Oper. Res. 12, 441 (1987). genRefLink(16, ’rf31’, ’10.1287
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.