×

Option pricing in illiquid markets: a fractional jump-diffusion approach. (English) Zbl 1447.91174

Summary: We study the pricing of European options when the underlying stock price is illiquid. Due to the lack of trades, the sample path followed by prices alternates between active and motionless periods that are replicable by a fractional jump-diffusion. This process is obtained by changing the time-scale of a jump-diffusion with the inverse of a Lévy subordinator. We prove that option prices are solutions of a forward partial differential equation in which the derivative with respect to time is replaced by a Dzerbayshan-Caputo (D-C) derivative. The form of the D-C derivative depends upon the chosen inverted Lévy subordinator. We detail this for inverted \(\alpha\) stable and inverted Poisson subordinators. To conclude, we propose a numerical method to compute option prices for the two types of D-C derivatives.

MSC:

91G20 Derivative securities (option pricing, hedging, etc.)
26A33 Fractional derivatives and integrals
60J74 Jump processes on discrete state spaces
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Eliazar, I.; Klafter, J., Spatial gliding, temporal trapping and anomalous transport, Physica D, 187, 30-50 (2004) · Zbl 1054.82026
[2] Metzler, R.; Klafter, J., The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A: Math. Gen., 37, 31, R161 (2004) · Zbl 1075.82018
[3] Acay, B.; Bas, E.; Abdeljawad, T., Fractional economic models based on market equilibrium in the frame of different type kernels, Chaos Solitons Fractals, 130, Article 109438 pp. (2020)
[4] Barkai, E.; Metzler, R.; Klafter, J., From continuous time random walks to the fractional Fokker-Planck equation, Phys. Rev. E, 61, 132-138 (2000)
[5] Scalas, E., Five years of continuous-time random walks in econophysics, (Namatame, A.; Kaizouji, T.; Aruka, Y., The Complex Networks of Economic Interactions (2006), Springer: Springer New York), 3-16 · Zbl 1183.91135
[6] Magdziarz, M., Black-Scholes formula in subdiffusive regime, J. Stat. Phys., 136, 553-564 (2009) · Zbl 1173.82026
[7] Magdziarz, M., Stochastic representation of subdiffusion processes with time-dependent drift, Stochastic Process. Appl., 119, 3238-3252 (2009) · Zbl 1180.60051
[8] Leonenko, N.; Meerschaert, M.; Sikorskii, A., Fractional Pearson diffusions, J. Math. Anal. Appl., 403, 532-546 (2013) · Zbl 1297.60057
[9] Leonenko, N.; Meerschaert, M.; Sikorskii, A., Correlation structure of fractional Pearson diffusions, Comput. Math. Appl., 66, 737-745 (2013) · Zbl 1381.60112
[10] Hainaut, D., Fractional Hawkes processes, Physica A, 549, Article 124330 pp. (2020) · Zbl 07572687
[11] Hainaut, D., Credit risk modelling with fractional self-excited processes (2020)
[12] Acay, B.; Bas, E.; Abdeljawad, T., Non-local fractional calculus from different viewpoint generated by truncated M-derivative, J. Comput. Appl. Math., 366, Article 112410 pp. (2020) · Zbl 1428.26009
[13] Dupire, B., Pricing with a smile, Risk, 7, 18-20 (1994)
[14] Andersen, L.; Andreasen, J., Jump diffusion models: Volatility smile fitting and numerical methods for pricing, Rev. Deriv. Res., 4, 231-262 (2000) · Zbl 1274.91398
[15] Friz, P. K.; Gerhold, S.; Yor, M., How to make Dupire’s local volatility work with jumps, Quant. Finance, 14, 8, 1327-1331 (2014) · Zbl 1402.91776
[16] Schreve, S. E., Stochastic Calculus for Finance II: Continuous-Time Models (2004), Springer Finance · Zbl 1068.91041
[17] Bergomi, L., Stochastic volatility modeling, (Chapman & Hall CRC financial mathematics series (2016)) · Zbl 1329.91003
[18] Carr, P.; Geman, H.; Madan, D. P.; Yor, M., From local volatility to local Lévy models, Quant. Finance, 4, 581-588 (2004) · Zbl 1405.91600
[19] Cont, R.; Voltchkova, E., Integro-differential equations for option prices in exponential Lévy models, Finance Stoch., 9, 299-325 (2005) · Zbl 1096.91023
[20] Bentata, A.; Cont, R., Forward equations for option prices in semimartingale models (2010), Preprint, available at arxiv.org/abs/1001 · Zbl 1325.60115
[21] Cox, J. C., Notes on option pricing I: constant elasticity of variance diffusions, J. Portf. Manage., 23, 15-17 (1975), Reprinted in, (December 1996)
[22] AppelBaum, D., Lévy processes and stochastic calculus, (Cambridge studies in advanced mathematics (2004)) · Zbl 1073.60002
[23] Schilling, R. L.; Song, R.; Vondracek, Z., Bernstein Functions. Theory and Applications (2010), Walter de Gruyter: Walter de Gruyter Berlin · Zbl 1197.33002
[24] Toaldo, B., Convolution-type derivatives, hitting-times of subordinators and time-changed \(C_0 -\) semigroups, Potential Anal., 42, 115-140 (2015) · Zbl 1315.60050
[25] Carr, P.; Wu, L., The finite moment log stable process and option pricing, J. Finance, 58, 2, 753-777 (2003)
[26] Piryatinska, A.; Saichev, A. I.; Woyczynski, W. A., Models of anomalous diffusion: the subdiffusive case, Physica A, 349, 3, 375-420 (2005)
[27] Merton, R. C., Option pricing when underlying stock returns are discontinuous, J. Financ. Econ., 3, 125-144 (1976) · Zbl 1131.91344
[28] Andersen, L.; Brotherton-Ratcliffe, R., The equity option volatility smile: a finite difference approach, J. Comput. Finance, 1, 2, 5-38 (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.