Hartl, Urs; Hellmann, Eugen The universal family of semistable \(p\)-adic Galois representations. (English) Zbl 07244791 Algebra Number Theory 14, No. 5, 1055-1121 (2020). Reviewer: Mouad Moutaoukil (Fès) MSC: 11S20 11F80 13A35 PDF BibTeX XML Cite \textit{U. Hartl} and \textit{E. Hellmann}, Algebra Number Theory 14, No. 5, 1055--1121 (2020; Zbl 07244791) Full Text: DOI
Hartl, Urs; Juschka, Ann-Kristin Pink’s theory of Hodge structures and the Hodge conjecture over function fields. (English) Zbl 07242506 Böckle, Gebhard (ed.) et al., \(t\)-motives: Hodge structures, transcendence and other motivic aspects. Zürich: European Mathematical Society (EMS) (ISBN 978-3-03719-198-9/hbk; 978-3-03719-698-4/ebook). EMS Series of Congress Reports, 31-182 (2020). MSC: 14C15 14C30 11G09 11J93 11R58 13A35 PDF BibTeX XML Cite \textit{U. Hartl} and \textit{A.-K. Juschka}, in: \(t\)-motives: Hodge structures, transcendence and other motivic aspects. Zürich: European Mathematical Society (EMS). 31--182 (2020; Zbl 07242506) Full Text: DOI
Böckle, Gebhard (ed.); Goss, David (ed.); Hartl, Urs (ed.); Papanikolas, Matthew (ed.) \(t\)-motives: Hodge structures, transcendence and other motivic aspects. (English) Zbl 1441.14003 EMS Series of Congress Reports. Zürich: European Mathematical Society (EMS) (ISBN 978-3-03719-198-9/hbk; 978-3-03719-698-4/ebook). xi, 461 p. (2020). MSC: 14-06 11-06 14C15 14C30 11G09 11J93 11R58 13A35 00B15 PDF BibTeX XML Cite \textit{G. Böckle} (ed.) et al., \(t\)-motives: Hodge structures, transcendence and other motivic aspects. Zürich: European Mathematical Society (EMS) (2020; Zbl 1441.14003) Full Text: DOI
Hartl, Urs Isogenies of abelian Anderson \(A\)-modules and \(A\)-motives. (English) Zbl 07224206 Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 19, No. 4, 1429-1470 (2019). MSC: 11G09 14K02 13A35 14L05 PDF BibTeX XML Cite \textit{U. Hartl}, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 19, No. 4, 1429--1470 (2019; Zbl 07224206) Full Text: DOI
Hartl, Urs; Singh, Rajneesh Kumar Local Shtukas and divisible local Anderson modules. (English) Zbl 07106608 Can. J. Math. 71, No. 5, 1163-1207 (2019). MSC: 11G09 13A35 14L05 PDF BibTeX XML Cite \textit{U. Hartl} and \textit{R. K. Singh}, Can. J. Math. 71, No. 5, 1163--1207 (2019; Zbl 07106608) Full Text: DOI arXiv
Hartl, Urs Period spaces for Hodge structures in equal characteristic. (English) Zbl 1304.11050 Ann. Math. (2) 173, No. 3, 1241-1358 (2011). Reviewer: Xiao Liang (Storrs) MSC: 11G09 13A35 14G20 14G22 14D07 PDF BibTeX XML Cite \textit{U. Hartl}, Ann. Math. (2) 173, No. 3, 1241--1358 (2011; Zbl 1304.11050) Full Text: DOI arXiv
Bornhofen, Matthias; Hartl, Urs Pure Anderson motives and abelian \(\tau\)-sheaves. (English) Zbl 1227.11077 Math. Z. 268, No. 1-2, 67-100 (2011). Reviewer: Jean-Paul Allouche (Paris) MSC: 11G09 13A35 PDF BibTeX XML Cite \textit{M. Bornhofen} and \textit{U. Hartl}, Math. Z. 268, No. 1--2, 67--100 (2011; Zbl 1227.11077) Full Text: DOI arXiv
Bornhofen, Matthias; Hartl, Urs Pure Anderson motives over finite fields. (English) Zbl 1227.11076 J. Number Theory 129, No. 2, 247-283 (2009). Reviewer: Jean-Paul Allouche (Paris) MSC: 11G09 14L05 13A35 16K20 PDF BibTeX XML Cite \textit{M. Bornhofen} and \textit{U. Hartl}, J. Number Theory 129, No. 2, 247--283 (2009; Zbl 1227.11076) Full Text: DOI arXiv
Hartl, Urs; Pink, Richard Vector bundles with a Frobenius structure on the punctured unit disc. (English) Zbl 1074.14028 Compos. Math. 140, No. 3, 689-716 (2004). Reviewer: Holger Brenner (Sheffield) MSC: 14H60 14G22 13A35 PDF BibTeX XML Cite \textit{U. Hartl} and \textit{R. Pink}, Compos. Math. 140, No. 3, 689--716 (2004; Zbl 1074.14028) Full Text: DOI
Hartl, U. T. Semi-stable models for curves with cusps. (English) Zbl 1023.14009 Math. Z. 243, No. 1, 1-23 (2003). MSC: 14H20 13F30 14H10 14D05 05C05 PDF BibTeX XML Cite \textit{U. T. Hartl}, Math. Z. 243, No. 1, 1--23 (2003; Zbl 1023.14009) Full Text: DOI