zbMATH — the first resource for mathematics

Foliations in deformation spaces of local \(G\)-shtukas. (English) Zbl 1316.14089
Let \(\mathbb{F}_q\) be the finite field with \(q\) elements and \(S\) be an integral noetherian \(\mathbb{F}_q\)-scheme. For a split connected reductive group \(G\) over \(\mathbb{F}_q\), let \(LG\) be the loop group of \(G\). The first main theorem of the paper is the following:
Theorem. Let \(g \in LG(S)\) be such that the \(\sigma\)-conjugacy classes of \(g_s\) in the geometric points \(s\) of \(S\) all coincide. Let \(x\) be a \(P\)-fundamental alcove associated with this \(\sigma\)-conjugacy class where \(P\) is a parabolic subgroup of \(G\) containing a Borel subgroup. Then there are morphisms \(\beta: \tilde{S} \to S'\) and \(\alpha : S' \to S\) with \(S'\) integral, \(\alpha\) finite surjective and \(\beta\) an étale covering, and a bounded element \(\tilde{h} \in LG(\tilde{S})\) such that \(\tilde{h}^{-1}g_{\tilde{S}}\sigma^*(\tilde{h}) \in I(\tilde{S})xI(\tilde{S})\) where \(I\) is the standard Iwahori subgroup scheme of \(K_0\) with the property that \(K_0(\text{Spec}(R)) = G(R[[z]])\).
As an corollary of the theorem, the authors show that if \(\underline{\mathcal{G}}\) is a local \(G\)-shtuka over \(S\) whose quasi-isogeny class is constant in all geometric points of \(S\), then after a suitable finite base change and after passing to an étale covering, \(\underline{\mathcal{G}}\) is isogenous to a local \(G\)-shtuka which is completely slope divisible.
The second main result studies the analogs of Oort’s foliations and central leaves in this situation. Now let \(S\) be a noetherian \(\mathbb{F}\)-scheme where \(\mathbb{F}/\mathbb{F}_q\) is a field extension. The central leaf corresponding to \(\underline{\mathbb{G}}\) in \(S\) is a geometrically irreducible component of \(\mathcal{C}_{\underline{\mathbb{G}},S} \subset S\) where \(\mathcal{C}_{\underline{\mathbb{G}},S}\) is defined by \[ \mathcal{C}_{\underline{\mathbb{G}},S} = \{s \in S : \underline{\mathbb{G}}_k \cong \underline{\mathcal{G}}_s \otimes_{k(s)} k, k = \bar{k}, k \supset k(s)\} \] It can be shown that \(\mathcal{C}_{\underline{\mathbb{G}},S}\) defines a reduced locally closed subscheme which is closed in the Newton stratum of \(\underline{\mathbb{G}}\).
The closed affine Deligne-Lusztig variety associated with \(b \in LG(k)\) and a dominant \(\mu \in X_*(T)\) is the reduced closed subscheme \(X_{\preceq \mu}(b)\) of the affine Grassmannian \(LG/K_0\) with \[ X_{\preceq \mu}(b)(k) = \{g \in LG(k)/K_0(k) : g^{-1}b\sigma^*(g) \in K_0(k)z^{\mu'}K_0(k) \; \text{for some} \; \mu' \preceq \mu \}. \] Theorem. Let \(\underline{\mathbb{G}} = (K_{0,k}, b\sigma^*)\) be a local \(G\)-shtuka over \(k\) bounded by a dominant \(\mu \in X_*(T)\) and with Newton point \(\nu\). Let \(\mathcal{N}_{\nu}\) be the Newton stratum of \([b]\) in the universal deformation space of \(\underline{\mathbb{G}}\) bounded by \(\mu\). Let \(x\) be a \(P\)-fundamental alcove associated with \([b]\). Then there is a reduced scheme \(S\) and a finite surjective morphism \(S \to \mathcal{N}_{\nu}\) which factorizes into finite surjective morphisms \(S \to X_{\preceq \mu}(b)^{\wedge} \widehat{\times}_k \mathcal{I}^{\wedge} \to \mathcal{N}_{\nu}\). Here \(X_{\preceq \mu}(b)^{\wedge}\) denotes the completion of \(X_{\preceq \mu}(b)\) at \(1\) and \(\mathcal{I}^{\wedge}\) denotes the completion of \(\mathbb{A}^{\langle 2\rho, \nu \rangle}\) at \(0\). Furthermore, \(\mathcal{C}_{\underline{\mathbb{G}}, \mathcal{N}_{\nu}}\) is geometrically irreducible and equal to the image of \(\{1\} \widehat{\times}_k \mathcal{I}^{\wedge}\) in \(\mathcal{N}_{\nu}\).
The last theorem essential implies that the Newton stratum is up to a finite surjective morphism a product of a closed affine Deligne-Lusztig variety and a central leaf which is an affine space. Using this theorem, the authors obtain lower bounds on the dimension of each irreducible components of the affine Deligne-Lusztig varieties, and in the case of affine Grassmannian case, this implies that they are equidimensional of some dimension which is previously known.
Reviewer: Xiao Xiao (Utica)

14L05 Formal groups, \(p\)-divisible groups
14M15 Grassmannians, Schubert varieties, flag manifolds
20G25 Linear algebraic groups over local fields and their integers
11G09 Drinfel’d modules; higher-dimensional motives, etc.
Full Text: DOI arXiv
[1] Beauville, A.; Laszlo, Y., Conformal blocks and generalized theta functions, Comm. math. phys., 164, 2, 385-419, (1994) · Zbl 0815.14015
[2] Beazley, E.T., Codimensions of Newton strata for \(\mathit{SL}_3(F)\) in the Iwahori case, Math. Z., 263, 499-540, (2009) · Zbl 1185.20051
[3] Beilinson, A.; Drinfeld, V., Quantization of hitchinʼs integrable system and Hecke eigensheaves, preprint on
[4] Chai, C.-L., Canonical coordinates on leaves of p-divisible groups: the two-slope case, preprint
[5] Faltings, G., Algebraic loop groups and moduli spaces of bundles, J. eur. math. soc., 5, 1, 41-68, (2003) · Zbl 1020.14002
[6] Görtz, U.; Haines, T.; Kottwitz, R.; Reuman, D., Dimensions of some affine Deligne-Lusztig varieties, Ann. sci. ec. norm. super. (4), 39, 3, 467-511, (2006) · Zbl 1108.14035
[7] Görtz, U.; Haines, T.; Kottwitz, R.; Reuman, D., Affine Deligne-Lusztig varieties in affine flag varieties, Compos. math., 146, 1339-1382, (2010) · Zbl 1229.14036
[8] Görtz, U.; He, X., Dimension of affine Deligne-Lusztig varieties in affine flag varieties, Doc. math., 15, 1009-1028, (2010) · Zbl 1248.20048
[9] Grothendieck, A., Élements de Géométrie algébrique, Publ. math. IHES, Grundlehren, vol. 166, (1971), Springer-Verlag Berlin, Bures-Sur-Yvette; see also · Zbl 0203.23301
[10] Haines, T.; Rapoport, M., Appendix: on parahoric subgroups, Adv. math., 219, 118-198, (2008), Appendix to G. Pappas, M. Rapoport: Twisted loop groups and their affine flag varieties
[11] Hartl, U., A dictionary between fontaine-theory and its analogue in equal characteristic, J. number theory, 129, 1734-1757, (2009) · Zbl 1186.11071
[12] Hartl, U.; Viehmann, E., The Newton stratification on deformations of local G-shtukas, J. reine angew. math., 656, 87-129, (2011) · Zbl 1225.14036
[13] Hartshorne, R., Algebraic geometry, (1977), Springer-Verlag New York, Heidelberg · Zbl 0367.14001
[14] Jantzen, J.C., Representations of algebraic groups, Math. surveys monogr., vol. 107, (2003), AMS Providence, RI · Zbl 0612.20021
[15] Kottwitz, R.E., Isocrystals with additional structure, Compos. math., 56, 2, 201-220, (1985) · Zbl 0597.20038
[16] Laszlo, Y.; Sorger, C., The line bundles on the moduli of parabolic G-bundles over curves and their sections, Ann. sci. ec. norm. super. (4), 30, 4, 499-525, (1997) · Zbl 0918.14004
[17] Laumon, G.; Moret-Bailly, L., Champs algébriques, Ergebnisse, vol. 39, (2000), Springer-Verlag Berlin · Zbl 0945.14005
[18] Ngô, B.C.; Polo, P., Résolutions de Demazure affines et formule de casselman-Shalika géométrique, J. algebraic geom., 10, 3, 515-547, (2001) · Zbl 1041.14002
[19] Oort, F., Foliations in moduli spaces of abelian varieties, J. amer. math. soc., 17, 2, 267-296, (2004) · Zbl 1041.14018
[20] Oort, F.; Zink, Th., Families of p-divisible groups with constant Newton polygon, Doc. math., 7, 183-201, (2002) · Zbl 1022.14013
[21] Pappas, G.; Rapoport, M., Twisted loop groups and their affine flag varieties, Adv. math., 219, 118-198, (2008) · Zbl 1159.22010
[22] Rapoport, M.; Richartz, M., On the classification and specialization of F-isocrystals with additional structure, Compos. math., 103, 153-181, (1996) · Zbl 0874.14008
[23] Rapoport, M.; Zink, T., Period spaces for p-divisible groups, Ann. of math. stud., vol. 141, (1996), Princeton University Press Princeton · Zbl 0873.14039
[24] Viehmann, E., Truncations of level 1 of elements in the loop group of a reductive group, preprint · Zbl 1350.20035
[25] Viehmann, E., The dimension of some affine Deligne-Lusztig varieties, Ann. sci. ec. norm. super. (4), 39, 513-526, (2006) · Zbl 1108.14036
[26] Zink, T., On the slope filtration, Duke math. J., 109, 79-95, (2001) · Zbl 1061.14045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.