×

zbMATH — the first resource for mathematics

On period spaces for \(p\)-divisible groups. (English. Abridged French version) Zbl 1161.14032
Summary: In their book “Period spaces for \(p\)-divisible groups” [Ann. Math. Stud. 141 (1996; Zbl 0873.14039)], M. Rapoport and Th. Zink constructed rigid analytic period spaces for Fontaine’s filtered isocrystals, and period morphisms from moduli spaces of \(p\)-divisible groups to some of these period spaces. We determine the image of these period morphisms, thereby contributing to a question of Grothendieck. We give examples showing that only in rare cases the image is all of the Rapoport-Zink period space.

MSC:
14L05 Formal groups, \(p\)-divisible groups
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Berger, L., Équations différentielles p-adiques et (ϕ,N)-modules filtrés, version from June 29th, 2004
[2] Berger, L., Limites de représentations cristallines, Compos. math., 140, 6, 1473-1498, (2004) · Zbl 1071.11067
[3] Berkovich, V.G., Spectral theory and analytic geometry over non-Archimedean fields, Mathematical surveys and monographs, vol. 33, (1990), Amer. Math. Soc. Providence, RI · Zbl 0715.14013
[4] Berkovich, V.G., Étale cohomology for non-Archimedean analytic spaces, Publ. math. IHES, 78, 5-161, (1993) · Zbl 0804.32019
[5] P. Berthelot, Cohomologie rigide et cohomologie rigide à support propre, prépublication 96-03, IRMA, Rennes, 1996
[6] Breuil, C., Groupes p-divisibles, groupes finis et modules ifltrés, Ann. of math., 152, 489-549, (2000) · Zbl 1042.14018
[7] Colmez, P., Espaces vectoriels de dimension finie et répresentations de de Rham, Preprint 2003, available at
[8] Colmez, P.; Fontaine, J.-M., Construction des représentations p-adiques semi-stables, Invent. math., 140, 1, 1-43, (2000) · Zbl 1010.14004
[9] Drinfeld, V.G., Coverings of p-adic symmetric domains, Funct. anal. appl., 10, 107-115, (1976) · Zbl 0346.14010
[10] G. Faltings, Coverings of p-adic period domains, Preprint, 2007
[11] Fontaine, J.-M., Modules galoisiens, modules filtrés et anneaux de barsotti – tate, (), 3-80 · Zbl 0429.14016
[12] Grothendieck, A., Groupes de barsotti – tate et cristaux, tome 1, (), 431-436 · Zbl 0244.14016
[13] Hartl, U., Period spaces for Hodge structures in equal characteristic, Preprint on arXiv: · Zbl 1304.11050
[14] Hartl, U., On a conjecture of Rapoport and Zink, version from May 10, 2006 · Zbl 1285.14027
[15] Hartl, U., A dictionary between fontaine-theory and its analogue in equal characteristic, Preprint on arXiv: · Zbl 1186.11071
[16] Kedlaya, K., Slope filtrations revisited, Doc. math., 10, 447-525, (2005) · Zbl 1081.14028
[17] Kisin, M., Crystalline representations and F-crystals, (), 459-496 · Zbl 1184.11052
[18] Messing, W., The crystals associated to barsotti – tate groups, Lecture notes in mathematics, vol. 264, (1972), Springer-Verlag Berlin · Zbl 0243.14013
[19] Rapoport, M.; Zink, T., Period spaces for p-divisible groups, Ann. math. stud., vol. 141, (1996), Princeton University Press Princeton · Zbl 0873.14039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.