×

He-Elzaki method for spatial diffusion of biological population. (English) Zbl 1434.35277

Summary: The foremost purpose of this paper is to present a valuable numerical procedure constructed on Elzaki transform and He’s Homotopy perturbation method (HPM) for nonlinear partial differential equation arising in spatial flow characterizing the general biological population model for animals. The actions are made usually by mature animals driven out by intruders or by young animals just accomplished maturity moving out of their parental region to initiate breeding region of their own. He-Elzaki method is a blend of Elzaki transform and He’s HPM. The results attained are compared with Sumudu decomposition method (SDM). The numerical results attained by suggested method specify that the procedure is easy to implement and precise. These outcomes reveal that the proposed method is computationally very striking.

MSC:

35R11 Fractional partial differential equations
35Q92 PDEs in connection with biology, chemistry and other natural sciences
92D25 Population dynamics (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Oldham, K. B. and Spanier, J., The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary order (Academic Press, California, 1974). · Zbl 0292.26011
[2] Yang, S., Fu, H. and Yu, B., Fractal analysis of flow resistance in tree like branching networks with roughened micro channels, Fractals25(1) (2017) 1750008.
[3] Abassy, T. A., Improved adomian decomposition method, Comput. Math. Appl.54 (2010) 42-54. · Zbl 1189.65241
[4] Adomian, G., Solving Frontier Problems of Physics (Kluwer, London, 1994). · Zbl 0802.65122
[5] Adomian, G., Solution of coupled nonlinear partial differential equations by decomposition, Comput. Math. Appl.31 (1996) 117-120. · Zbl 0846.35029
[6] Wazwaz, M., The variational iteration method for solving linear and nonlinear systems of PDEs, Comput. Math. Appl.54 (2007) 895-902. · Zbl 1145.35312
[7] Sakar, M. G., Uludag, F. and Erdogan, F., Numerical solution of time fractional nonlinear PDEs with probation delays by homotopy perturbation method, Appl. Math. Model.40(13-14) (2016) 6639-6649. · Zbl 1465.65113
[8] Li, X. C., Xu, M. Y. and Jiang, X. Y., Homotopy perturbation method to time-fractional diffusion equation with a moving boundary condition, Appl. Math. Comput.208(2) (2009) 434-439. · Zbl 1159.65106
[9] Hemeda, A. A., Modified homotopy perturbation method for solving fractional differential equations, J. Appl. Math.2014 (2014) 594245. · Zbl 1442.65318
[10] Lee, M. K., Hosseini, M., Satesh, F. and Namasivayam, N., Natural frequencies of thin plates using homotopy perturbation method, Appl. Math. Model.50 (2017) 524-543. · Zbl 1476.74099
[11] Erturk, S. and Momani, S., Solving system of fractional differential equations using differential transform method, J. Comput. Appl. Math.215(1) (2008) 142-151. · Zbl 1141.65088
[12] Arshad, M., Lu, D. and Wang, J., \((N + 1)\) dimensional fractional reduced differential transform method for fractional order partial differential equations, Commun. Nonlinear Sci. Numer. Simul.48 (2017) 509-519. · Zbl 1510.65277
[13] Akbulut, A. and Kaplan, M., Auxiliary equation method for time-fractional differential equations with conformable derivative, Comput. Math. Appl.75(3) (2018) 876-882. · Zbl 1409.35208
[14] Guner, O. and Bekir, A., The Exp-function method for solving nonlinear space-time fractional differential equations in mathematical physics, J. Assoc. Arab Univ. Basic Appl. Sci.24 (2017) 277-282.
[15] Saeed, U. and Rehman, M., Haar wavelet Picard method for fractional nonlinear partial differential equations, Appl. Math. Comput.264 (2015) 310-322. · Zbl 1410.65401
[16] Abdel-Salam, E. A.-B. and Gumma, E. A. E., Analytical solution of nonlinear space-time fractional differential equations using improved fractional Riccati expansion method, Ain Shams Eng. J.6(2) (2015) 613-620.
[17] Prakash, J., Kothandapani, M. and Bharathi, V., Numerical approximation of nonlinear fractional differential equations by using modified He-Laplace method, Alexandria Eng. J.55(1) (2016) 645-651.
[18] Filobello-Nino, U.et al., Laplace-transform-homotopy perturbation method with arbitrary initial approximation and residual error cancelation, Appl. Math. Model.41 (2017) 180-194. · Zbl 1443.65112
[19] Moutsinga, C. R. B., Pindza, E. and Mare, E., Homotopy perturbation transform method for pricing under pure diffusion models with affine coefficients, J. King Saud Univ.-Sci.30(1) (2018) 1-13.
[20] Ahmed, H. F., Bahgat, M. S. M. and Zaki, M., Numerical approaches to system of fractional partial differential equation, J. Egyptian Math. Soc.25(2) (2017) 141-150. · Zbl 1373.65079
[21] Jafari, H., Nazari, M., Baleanu, D. and Khalique, C. M., A new approach for solving a system of fractional partial differential equations, Comput. Math. Appl.66(5) (2013) 838-843. · Zbl 1381.35221
[22] Das, S., Vishal, K. and Gupta, P. K., Solution of the nonlinear fractional diffusion equation with absorbent term and external force, Appl. Math. Model.35(8) (2011) 3970-3979. · Zbl 1221.35437
[23] Xinhui, S., Wang, C., Chen, Y. and Zheng, L., Numerical method to initial and boundary value problems for fractional partial differential equations with time-space variable coefficients, Appl. Math. Model.40(7-8) (2016) 4397-4411. · Zbl 1459.65202
[24] Sakar, M. G., Uludag, F. and Erdogan, F., Numerical solution of time fractional nonlinear PDEs with proportional delays by homotopy perturbation method, Appl. Math. Model.40(13-14) (2016) 6639-6649. · Zbl 1465.65113
[25] Luchko, Yu. and Gorenflo, R., An operational method for solving fractional differential equations with the Caputo derivaties, Acta Math. Vietnam24 (1999) 207-233. · Zbl 0931.44003
[26] Xiao, L. D. and Juan, J. N., Analytical solution for coupling fractional partial differential equations with Dirichlet boundary conditions, Commun. Nonlinear Sci. Numer. Simul.52 (2017) 165-176. · Zbl 1510.35374
[27] Kaplan, M. and Bekir, A., A novel analytical method for time fractional differential equations, Optik-Int. J. Light Electron Opt.127(20) (2016) 8209-8214.
[28] Odibat, Z. M., Analytic study of linear system of fractional differential equations, Comput. Math. Appl.59(3) (2010) 1171-1183. · Zbl 1189.34017
[29] Lyiola, O. S. and Olayinka, O. G., Analytical solutions of time fractional models for homogeneous Gardner equation and non-homogeneous differential equations, Ain Shams Eng. J.5(3) (2014) 999-1004.
[30] Reutskiv, S. Y., A new semi-analytical collocation method for solving multi-term fractional partial differential equations with time variable coefficients, Appl. Math. Model.45 (2017) 238-254. · Zbl 1446.65132
[31] Zhang, Y. and Yang, X. J., An efficient analytical method for solving local fractional nonlinear PDEs arising in mathematical physics, Appl. Math. Model.40(3) (2016) 1793-1799. · Zbl 1446.35260
[32] Zhao, Y. M., Zhang, Y. D., Liu, F., Turner, I. and Shi, D. Y., Analytical solution and nonconforming finite element approximation for the 2D multi-term fractional sub diffusion equation, Appl. Math. Model.40(19-20) (2016) 8810-8825. · Zbl 1471.65156
[33] Taghizadeh, N., Mirzazadeh, M., Rahimian, M. and Akbari, M., Application of the simplest equation method to some time-fractional partial differential equations, Ain Shams Eng. J.4(4) (2013) 897-902.
[34] Sahadevan, R. and Prakash, P., Exact solutions and maximal dimension of invariant subspaces of time fractional coupled nonlinear partial differential equations, Commun. Nonlinear Sci. Numer. Simul.42 (2017) 158-177. · Zbl 1473.35636
[35] Yang, X. J., Machado, T. and Baleanu, J. A., Dumitru, Exact travelling-wave solution for local fractional Boussinesq equation in fractal domain, Fractals25(4) (2017) 1740006.
[36] Yang, X. J., Feng, G. and Srivastava, H. M., Non-differentiable exact solutions for the nonlinear ODES defined on fractals sets, Fractals25(4) (2017) 1740002.
[37] Senol, M. and Dolapci, I. T., On the perturbation-iteration algorithm for fractional differential equations, J. King Saud Univ. — Sci.28(1) (2016) 69-74.
[38] Barkai, E., Metzler, R. and Klafer, J., From continuous time random walks to the fractional Fokker-Planck equation, Phys. Rev. E61 (2000) 132-138.
[39] Kumar, D., Singh, J. and Rathore, S., Sumudu decomposition method for nonlinear equations, Int. Math. Forum7(11) (2012) 515-521. · Zbl 1250.65126
[40] Michel, P., Large size population and size scale limit of stochastic particle model, Math. Models Methods Appl. Sci.27(3) (2017) 581-615. · Zbl 1366.35201
[41] da Viega, L. B., Lovadina, C. and Russo, A., Stability analysis for the virtual element method, Math. Models Methods Appl. Sci.27(13) (2017) 2557-2594. · Zbl 1378.65171
[42] Caponetto, R., Dongola, G., Fortuna, L. and Petras, I., Fractional Order System: Modeling and Control Applications (World Scientific, Singapore, 2010).
[43] Hernandez, E., O’Regan, D. and Balachandran, K., On recent developments in the theory of abstract differential equations with fractional derivatives, Nonlinear Anal.73 (2010) 3462-3471. · Zbl 1229.34004
[44] Machado, J. T., Kiryakova, V. and Mainardi, F., Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul.16 (2010) 1140-1153. · Zbl 1221.26002
[45] Mainardi, F., Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models (Imperial College Press, London, 2010). · Zbl 1210.26004
[46] Kilbas, A. A., Srivastava, H. M. and Trujillo, J. J., Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006). · Zbl 1092.45003
[47] Podlubny, I., Fractional Differential Equations (Academic Press, California, 1999). · Zbl 0918.34010
[48] Magin, R., Ortiguera, M. D., Podlubny, I. and Trujillo, J. J., On the fractional signals and system, Signal Process.91 (2011) 350-371. · Zbl 1203.94041
[49] Miller, K. and Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley and Sons, New York, 1993). · Zbl 0789.26002
[50] Suleman, M., Lu, D., Ul Rahman, J. and Anjum, N., Analytical solution of linear fractionally damped oscillator by Elzaki transformed method, DJ J. Eng. Appl. Math.4(2) (2018) 49-57.
[51] Ul Rahman, J., Suleman, M. and Anjum, N., Solution of unbounded boundary layer equation using modified homotopy perturbation method, Int. J. Macro Nano Phys.3(1) (2018) 11-15.
[52] Suleman, M., Elzaki, T. M., Ul Rahman, J. and Wu, Q., A novel technique to solve space and time fractional telegraph equation, J. Comput. Theoret. Nanosci.13 (2016) 1536-1545.
[53] Suleman, M., Elzaki, T. M., Wu, Q., Anjum, N. and Ul Rahman, J., New application of Elzaki projected differential transform method, J. Comput. Theoret. Nanosci.14 (2017) 631-639.
[54] Suleman, M., Lu, D., He, J. H., Farooq, U., Noeiaghdam, S. and Chandio, F. A., Elzaki projected differential transform method for fractional order system of linear and nonlinear fractional partial differential equation, Fractals26(3) (2018) 1850041.
[55] Suleman, M., Lu, D., He, J. H., Farooq, U., Hui, Y. S. and Ul Rahman, J., Numerical investigation of fractional HIV model using Elzaki projected differential transform method, Fractals26(5) (2018) 1850062.
[56] Elzaki, T. M., The new integral transform ‘Elzaki Transform’, Global J. Pure Appl. Math.7(1) (2011) 57-64.
[57] Elzaki, T. M., Elzaki, S. M. and Elnour, E. A., On the new integral transform ‘Elzaki transform’ fundamental properties investigations and applications, Global J. Math. Sci.: Theory Pract.4(1) (2012) 1-13.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.