×

A simple model for the study of the tolerance of interfacial crack under thermal load. (English) Zbl 1398.74014

Summary: Thermal stresses due to a mismatch between material properties may induce failure of a bonded interface. A simple model for linear dissimilar elastic bonded solids containing an interfacial Zener-Stroh crack under a uniform temperature shift is proposed. Its solution is derived. This result may provide some information about the interface defect tolerant size, which is mainly responsible for triggering interface failures under thermal load. Thus, it can be used to assess the interface integrity and reliability under thermal load. On the other hand, the practical interface crack problem in this study provides another background (mechanism) for the Zener-Stroh crack model.

MSC:

74A45 Theories of fracture and damage
74F05 Thermal effects in solid mechanics
74R99 Fracture and damage
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Mura T.: Micromechanics of Defects in Solids. Martinus Nijhoff, The Netherlands (1987)
[2] Chen W.R., Wu X., Marple B.R., Patnaik P.C.: The growth and influence of thermally grown oxide in a thermal barrier coating. Surf. Coat. Technol. 201, 1074–1079 (2006) · doi:10.1016/j.surfcoat.2006.01.023
[3] Chen X., Hutchinson J.W., He M.Y., Evans A.G.: On the propagation and coalescence of delamination cracks in compressed coatings: with application to thermal barrier systems. Acta Mater. 51, 2017–2030 (2003) · doi:10.1016/S1359-6454(02)00620-1
[4] He M.Y., Hutchinson J.W., Evans A.G.: Large deformation simulations of cyclic displacement instabilities in thermal barrier systems. Acta Mater. 50, 1063–1073 (2002) · doi:10.1016/S1359-6454(01)00406-2
[5] Karlsson A.M., Hutchinson J.W., Evans A.G.: A fundamental model of cyclic instabilities in thermal barrier systems. J. Mech. Phys. Solids. 50, 1565–1589 (2002) · Zbl 1116.74345 · doi:10.1016/S0022-5096(02)00003-0
[6] Giolli C., Scrivani A., Rizzi G., Borgioli F., Bolelli G., Lusvarghi L.: Failure mechanism for thermal fatigue of thermal barrier coating systems. J. Therm. Spray Technol. 18, 223–230 (2009) · doi:10.1007/s11666-009-9307-4
[7] Drai A., Bachir B.B., Meddah M., Benguediab M.: Analysis of interfacial fracture in ceramic-metal assemblies under effect of thermal residual stresses. Comput. Mater. Sci. 46, 1119–1123 (2009) · doi:10.1016/j.commatsci.2009.05.026
[8] Evans A.G., Hutchinson J.W.: The mechanics of coating delamination in thermal gradients. Surf. Coat. Technol. 201, 7905–7916 (2007) · doi:10.1016/j.surfcoat.2007.03.029
[9] Nusier S.Q., Newaz G.M.: Growth of interfacial cracks in a TBC/superalloy system due to oxide volume induced internal pressure and thermal loading. Int. J. Solids Struct. 37, 2151–2166 (2000) · Zbl 1090.74662 · doi:10.1016/S0020-7683(98)00321-7
[10] Khandelwal R., Chandra Kishen J.M.: Complex variable method of computing J k for bi-material interface cracks. Eng. Fract. Mech. 73, 1568–1580 (2006) · doi:10.1016/j.engfracmech.2005.12.016
[11] Khandelwal R., Chandra Kishen J.M.: The use of conservative integral in bi-material interface crack problems subjected to thermal loads. Int. J. Solids Struct. 45, 2976–2992 (2008) · Zbl 1169.74544 · doi:10.1016/j.ijsolstr.2008.01.006
[12] Nusier S., Newaz G.: Analysis of interfacial cracks in a TBC/superalloy system under thermal loading. Eng. Fract. Mech. 60, 577–581 (1998) · doi:10.1016/S0013-7944(98)00031-9
[13] Boutabout B., Chama M., Bouiadjra B.A.B., Serier B., Lousdad A.: Effect of thermomechanical loads on the propagation of crack near the interface brittle/ductile. Comput. Mater. Sci. 46, 906–911 (2009) · doi:10.1016/j.commatsci.2009.04.039
[14] Bhatnagar H., Ghosh S., Walter M.E.: A parametric study of damage initiation and propagation in EB-PVD thermal barrier coatings. Mech. Mater. 42, 96–107 (2010) · doi:10.1016/j.mechmat.2009.09.004
[15] Simone A., Duarte C.A., Van der Giessen E.: A generalized finite element method for polycrystals with discontinuous grain boundaries. Int. J. Numer. Meth. Eng. 67, 1122–1145 (2006) · Zbl 1113.74076 · doi:10.1002/nme.1658
[16] Menk A., Bordas S.: Numerically determined enrichment functions for the extended finite element method and applications to bi-material anisotropic fracture and polycrystals. Int. J. Numer. Meth. Eng. 83, 805–828 (2010) · Zbl 1197.74182
[17] Stroh A.N.: The formulation of cracks as a result of plastic flow I. Proc. R. Soc. Lond. A 223, 404–414 (1954) · Zbl 0056.23503 · doi:10.1098/rspa.1954.0124
[18] Cherepanov G.P.: Interface microcrack nucleation. J. Mech. Phys. Solids 42, 665–680 (1994) · Zbl 0803.73056 · doi:10.1016/0022-5096(94)90057-4
[19] Fan H.: Interfacial Zener-Stroh crack. J. Appl. Mech. 61, 829–834 (1994) · Zbl 0828.73055 · doi:10.1115/1.2901564
[20] Xiao Z.M., Chen B.J., Fan H.: A Zener–Stroh crack in a fiber-reinforced composite materials. Mech. Mater. 10, 593–606 (2000) · doi:10.1016/S0167-6636(00)00021-1
[21] Chen Y.Z.: Multiple Zener-Stroh crack problem in an infinite plate. Acta Mech. 170, 11–23 (2004) · Zbl 1063.74090 · doi:10.1007/s00707-004-0113-2
[22] Suo Z.: Zener’s Crack and the M-integral. J. Appl. Mech. 67, 417–418 (2000) · Zbl 1110.74697 · doi:10.1115/1.1302302
[23] Ma L.F., Zhao J., Ni B.: A Zener–Stroh crack interacting with an edge dislocation. Theor. Appl. Mech. Lett. 2, 021003 (2011) · doi:10.1063/2.1102103
[24] Fan H., Xiao Z.M.: A Zener–Stroh crack near an interface. Int. J. Solids Struct. 34, 2829–2842 (1997) · Zbl 0942.74622 · doi:10.1016/S0020-7683(96)00196-5
[25] Fan H., Sun Y.M., Xiao Z.M.: Contact zone in an interfacial Zener–Stroh crack. Mech. Mater. 30, 151–159 (1998) · doi:10.1016/S0167-6636(98)00044-1
[26] Muskhelishvili, N.I.: Some problems of mathematical theory of elasticity. (English translation of the third Russian edition. Noordhoff Ltd. Groningen) (1953) · Zbl 0052.41402
[27] Eshelby J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957) · Zbl 0079.39606 · doi:10.1098/rspa.1957.0133
[28] Xiao Z.M., Zhao J.F.: A Zener–Stroh crack at the interface of a thin film bonded to a substrate. Int. J. Mech. Mater. Des. 1, 241–254 (2004) · doi:10.1007/s10999-004-1495-y
[29] Hutchinson J.W., Mear M., Rice J.R.: Crack paralleling an interface between dissimilar materials. J. Appl. Mech. 54, 828–832 (1987) · doi:10.1115/1.3173124
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.