Tree-based modeling of time-varying coefficients in discrete time-to-event models. (English) Zbl 1458.62219

Summary: Hazard models are popular tools for the modeling of discrete time-to-event data. In particular two approaches for modeling time dependent effects are in common use. The more traditional one assumes a linear predictor with effects of explanatory variables being constant over time. The more flexible approach uses the class of semiparametric models that allow the effects of the explanatory variables to vary smoothly over time. The approach considered here is in between these modeling strategies. It assumes that the effects of the explanatory variables are piecewise constant. It allows, in particular, to evaluate at which time points the effect strength changes and is able to approximate quite complex variations of the change of effects in a simple way. A tree-based method is proposed for modeling the piecewise constant time-varying coefficients, which is embedded into the framework of varying-coefficient models. One important feature of the approach is that it automatically selects the relevant explanatory variables and no separate variable selection procedure is needed. The properties of the method are investigated in several simulation studies and its usefulness is demonstrated by considering two real-world applications.


62N02 Estimation in survival analysis and censored data
62J02 General nonlinear regression
62G08 Nonparametric regression and quantile regression
62P10 Applications of statistics to biology and medical sciences; meta analysis


gamair; discSurv; VGAM; mgcv
Full Text: DOI


[1] Adebayo, SB; Fahrmeir, L., Analysing child mortality in Nigeria with geoadditive discrete-time survival models, Stat Med, 24, 709-728 (2005)
[2] Agresti, A., Categorical data analysis (2013), New York: Wiley, New York · Zbl 1281.62022
[3] Berger, Moritz; Tutz, Gerhard; Schmid, Matthias, Tree-structured modelling of varying coefficients, Statistics and Computing, 29, 2, 217-229 (2018) · Zbl 1430.62164
[4] Berger, M.; Schmid, M., Semiparametric regression for discrete time-to-event data, Stat Model, 18, 322-345 (2018)
[5] Berger, M.; Schmid, M.; Welchowski, T.; Schmitz-Valckenberg, S.; Beyersmann, J., Subdistribution hazard models for competing risks in discrete time, Biostatistics (2018)
[6] Berger, M.; Tutz, G.; Schmid, M., Tree-structured modelling of varying coefficients, Stat Comput (2018) · Zbl 1430.62164
[7] Berger, M.; Welchowski, T.; Schmitz-Valckenberg, S.; Schmid, M., A classification tree approach for the modeling of competing risks in discrete time, Adv Data Anal Classif (2018) · Zbl 1474.62382
[8] Biasotto, M.; Pellis, T.; Cadenaro, M.; Bevilacqua, L.; Berlot, G.; Lenarda, RD, Odontogenic infections and descending necrotising mediastinitis: case report and review of the literature, Int Dental J, 54, 97-102 (2004)
[9] Brüderl J, Drobnic̆ S, Hank K, Huinink J, Nauck B, Neyer F, Walper S, Alt P, Borschel E, Bozoyan C, Buhr P, Finn C, Garrett M, Greischel H, Hajek K, Herzig M, Huyer-May B, Lenke R, Müller B, Peter T, Schmiedeberg C, Schütze P, Schumann N, Thönnissen C, Wetzel M, Wilhelm B (2018) The German family panel (pairfam). GESIS Data Archive, Cologne. ZA5678 Data file Version 9.1.0. 10.4232/pairfam.5678.9.1.0.
[10] Burnham, R.; Rishi, RB; Bridle, C., Changes in admission rates for spreading odontogenic infection resulting from changes in government policy about the dental schedule and remunerations, Br J Oral Maxillofac Surg, 49, 26-28 (2011)
[11] Cai, Z.; Sun, Y., Local linear estimation for time-dependent coefficients in Cox’s regression models, Scand J Stat, 30, 93-111 (2003) · Zbl 1034.62096
[12] Cox, DR, Regression models and life-tables, J R Stat Soc, Ser B (Stat Methodol), 34, 187-220 (1972)
[13] De Boor, C., A practical guide to splines (1978), New York: Springer, New York · Zbl 0406.41003
[14] Djeundje, VB; Crook, J., Dynamic survival models with varying coefficients for credit risks, Eur J Oper Res, 275, 319-333 (2018) · Zbl 1431.91410
[15] Eilers, PH; Marx, BD, Flexible smoothing with B-splines and penalties, Stat Sci, 11, 89-102 (1996) · Zbl 0955.62562
[16] Fahrmeir, L.; Wagenpfeil, S., Smoothing hazard functions and time-varying effects in discrete duration and competing risks models, J Am Stat Assoc, 91, 1584-1594 (1996) · Zbl 0883.62098
[17] Groll, A.; Tutz, G., Variable selection in discrete survival models including heterogeneity, Lifetime Data Anal, 23, 305-338 (2017) · Zbl 1383.62212
[18] Hastie, T.; Tibshirani, R., Varying-coefficient models, J R Stat Soc, Ser B (Stat Methodol), 55, 757-796 (1993) · Zbl 0796.62060
[19] Heim, N.; Berger, M.; Wiedemeyer, V.; Reich, RH; Martini, M., A mathematical approach improves the predictability of length of hospitalization due to acute odontogenic infection. A retrospective investigation of 303 patients, J Cranio-Maxillofac Surg, 47, 334-340 (2018)
[20] Heyard, R.; Timsit, JF; Essaied, W.; Held, L., Dynamic clinical prediction models for discrete time-to-event data with competing risks—a case study on the OUTCOMEREA database, Biom J (2018)
[21] Huininik J (2014) Alter der Mütter bei Geburt des ersten und der nachfolgenden Kinder - europäischer Vergleich. In: Deutsche Familienstiftung (Hrsg) Wenn Kinder - wann Kinder? Ergebnisse der ersten Welle des Beziehungs- und Familienpanels. Parzellers Buchverlag, Fulda, pp 13-26
[22] Huinink, J.; Brüderl, J.; Nauck, B.; Walper, S.; Castiglioni, L.; Feldhaus, M., Panel analysis of intimate relationships and family dynamics (pairfam): conceptual framework and design, J Fam Res, 23, 77-101 (2011)
[23] Kalbfleisch, JD; Prentice, R., The survival analysis of failure time data (2002), Wiley: Hoboken, Wiley
[24] Kandala, NB; Ghilagaber, G., A geo-additive Bayesian discrete-time survival model and its application to spatial analysis of childhood mortality in Malawi, Qual Quant, 40, 935-957 (2006)
[25] Klein, J.; Möschberger, M., Survival analysis: statistical methods for censored and truncated data (2003), New York: Springer, New York
[26] Klein, JP; Houwelingen, HCV; Ibrahim, JG; Scheike, TH, Handbook of survival analysis (2016), Boca Raton: Chapman & Hall, Boca Raton
[27] Lambert, P.; Eilers, P., Bayesian proportional hazards model with time-varying regression coefficients: a penalized Poisson regression approach, Stat Med, 24, 3977-3989 (2005)
[28] Möst, S.; Pößnecker, W.; Tutz, G., Variable selection for discrete competing risks models, Qual Quan, 50, 1589-1610 (2016)
[29] Rao, D.; Desai, A.; Kulkarni, R.; Gopalkrishnan, K.; Rao, C., Comparison of maxillofacial space infection in diabetic and nondiabetic patients, Oral Surg, Oral Med, Oral Pathol, Oral Radiol, Endod, 110, e7-e12 (2010)
[30] Ruhe, C., Quantifying change over time: interpreting time-varying effects in duration analyses, Polit Anal, 26, 90-111 (2018)
[31] Sargent, DJ, A flexible approach to time-varying coefficients in the Cox regression setting, Lifetime Data Anal, 3, 13 (1997) · Zbl 0896.62126
[32] Schmid, M.; Tutz, G.; Welchowski, T., Discrimination measures for discrete time-to-event predictions, Econom Stat, 7, 153-164 (2017)
[33] Tian, L.; Zucker, D.; Wei, L., On the Cox model with time-varying regression coefficients, J Am Stat Assoc, 100, 172-183 (2005) · Zbl 1117.62435
[34] Tutz, G.; Binder, H., Flexible modelling of discrete failure time including time-varying smooth effects, Stat Med, 23, 2445-2461 (2004)
[35] Tutz, G.; Schmid, M., Modeling discrete time-to-event data (2016), New York: Springer, New York · Zbl 1338.62006
[36] Van den Berg, GJ; Heckman, JJ; Leamer, E., Duration models: specification, identification and multiple durations, Handbook of econometrics (2001), Amsterdam: North Holland, Amsterdam
[37] Welchowski T, Schmid M (2018) discSurv: discrete time survival analysis. R package version 1.3.4. http://CRAN.R-project.org/package=discSurv
[38] Willett, JB; Singer, JD, Investigating onset, cessation, relapse, and recovery: why you should, and how you can, use discrete-time survival analysis to examine event occurrence, J Consult Clin Psychol, 61, 952-965 (1993)
[39] Wood, SN, Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models, J R Stat Soc: Ser B (Stat Methodol), 73, 3-36 (2011) · Zbl 1411.62089
[40] Wood, SN, Generalized additive models: an introduction with R (2017), Boca Raton: Chapman & Hall, Boca Raton
[41] Wood SN (2018) mgcv: mixed GAM computation vehicle with GCV/AIC/REML smoothness estimation. R package version 1.8-15. https://CRAN.R-project.org/package=mgcv
[42] Xu, R.; Adak, S., Survival analysis with time-varying regression effects using a tree-based approach, Biometrics, 58, 305-315 (2002) · Zbl 1209.62341
[43] Yee, TW, The VGAM package for categorical data analysis, J Stat Softw, 32, 1-34 (2010)
[44] Yee TW (2017) VGAM: vector generalized linear and additive models. R package version 1.0-4. https://CRAN.R-project.org/package=VGAM
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.