×

Penetrative convection in a fluid layer with throughflow. (English) Zbl 1232.76018

Summary: Linear and nonlinear stability analyses of vertical throughflow in a fluid layer, where the density is quadratic in temperature, are studied. To avoid the loss of key terms a weighted functional is used in the energy analysis. Both conditional and unconditional thresholds are derived. When the throughflow is ascending the linear and nonlinear boundaries show substantial agreement. The linear boundary remains close to the conditional nonlinear boundary for descending throughflow, whilst the unconditional threshold begins to diverge.

MSC:

76E07 Rotation in hydrodynamic stability
76M22 Spectral methods applied to problems in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Capone F., Rionero S.: Nonlinear stability of a convective motion in a porous layer driven by a horizontally periodic temperature gradient. Continuum Mech. Thermodyn. 15, 529–538 (2003) · Zbl 1063.76038 · doi:10.1007/s00161-003-0131-7
[2] Capone, F., Gentile, M., Rionero, S.: Influence of linear concentration heat source and parabolic density on penetrative convection onset. In: Monaco, R., Mulone, G., Rionero, S., Ruggeri, T. (Eds.) Proceedings of 13th Conference Waves and Stability in Continuous Media, pp. 77–82. World Scientific, Mountain View (2005) · Zbl 1139.76315
[3] Capone, F., Gentile, M., Rionero, S.: On penetrative convection in porous media driven by quadratic heat sources. In: Monaco, R., Mulone, G., Rionero, S., Ruggeri, T. (Eds.) Proceedings of 13th Conference on Waves and Stability in Continuous Media, pp. 83–88. World Scientific, Moutain View (2005) · Zbl 1345.76096
[4] Chen F.: Throughflow effects on convective instability in superposed fluid and porous layers. J. Fluid Mech. 231, 113–133 (1991) · Zbl 0729.76037 · doi:10.1017/S0022112091003336
[5] Christopherson D.G.: Note on the vibration of membranes. Q. J. Math. 11, 63–65 (1940) · Zbl 0023.04202 · doi:10.1093/qmath/os-11.1.63
[6] Dongarra J.J., Straughan B., Walker D.W.: Chebyshev tau-QZ algorithm methods for calculating spectra of hydrodynamic stability problems. Appl. Num. Math. 22, 399–434 (1996) · Zbl 0867.76025 · doi:10.1016/S0168-9274(96)00049-9
[7] Flavin J.N., Rionero S.: Qualitative estimates for partial differential equations. CRC Press, Boca Raton (1996) · Zbl 0862.35001
[8] Flavin J.N., Rionero S.: Stability properties for nonlinear diffusion in porous and other media. J. Math. Anal. Appl. 281, 221–232 (2003) · Zbl 1027.35054 · doi:10.1016/S0022-247X(03)00063-5
[9] Hill A.A., Rionero S., Straughan B.: Global stability for penetrative convection with throughflow in a porous material. IMA J. Appl. Math. 72, 635–643 (2007) · Zbl 1129.76022 · doi:10.1093/imamat/hxm036
[10] Krishnamurti R.: On cellular cloud patterns. Part I: mathematical model. J. Atmos. Sci. 32, 1353–1363 (1975) · doi:10.1175/1520-0469(1975)032<1353:OCCPPM>2.0.CO;2
[11] Molar C.B., Stewart G.W.: An algorithm for generalized matrix eigenproblems. SIAM J. Numer. Anal. 10, 241–256 (1973) · Zbl 0253.65019 · doi:10.1137/0710024
[12] Payne L.E., Song J.C., Straughan B.: Continuous dependence and convergence results for Brinkman and Forchheimer models with variable viscosity. Proc. R. Soc. Lond. A 455, 2173–2190 (1999) · Zbl 0933.76091 · doi:10.1098/rspa.1999.0398
[13] Payne L.E., Straughan B.: Unconditional nonlinear stability in temperature-dependent viscosity flow in a porous medium. Stud. Appl. Math. 105, 59–81 (2000) · Zbl 1136.35318 · doi:10.1111/1467-9590.00142
[14] Qiao Z., Kaloni P.: Nonlinear convection in a porous medium with inclined temperature gradient and vertical throughflow. Int. J. Heat Mass Transf 41, 2549–2552 (1998) · Zbl 0939.76533 · doi:10.1016/S0017-9310(97)00338-4
[15] Rionero S., Galdi G.: Weighted Energy Methods in Fluid Dynamics and Elasticity. Springer, Berlin (1985) · Zbl 0585.76001
[16] Somerville R.C.J., Gal-Chen T.: Numerical simulation of convection with mean vertical motion. J. Atmos. Sci. 36, 805–815 (1979) · doi:10.1175/1520-0469(1979)036<0805:NSOCWM>2.0.CO;2
[17] Straughan B.: The Energy Method, Stability And Nonlinear Convection. Springer, New York (2004) · Zbl 1032.76001
[18] Straughan B.: Resonant porous penetrative convection. Proc. R. Soc. Lond. A 460, 2913–2927 (2004) · Zbl 1329.76344 · doi:10.1098/rspa.2004.1292
[19] Straughan B.: Global nonlinear stability in porous convection with a thermal non-equilibrium model. Proc. R. Soc. Lond. A 462, 409–418 (2006) · Zbl 1149.76626 · doi:10.1098/rspa.2005.1555
[20] Straughan B., Walker D.W.: Two very accurate and efficient methods for computing eigenvalues and eigenfunctions in porous convection problems. J. Comput. Phys. 127, 128–141 (1996) · Zbl 0858.76064 · doi:10.1006/jcph.1996.0163
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.