# zbMATH — the first resource for mathematics

Norm inequalities involving convex and concave functions of operators. (English) Zbl 07089815
Summary: Let $$A_1,\dots,A_n$$ be bounded linear operators on a complex separable Hilbert space $$\mathbb{H}$$ and let $$\alpha_1,\dots,\alpha_n$$ be positive real numbers such that $$\sum^n_{j=1}\alpha_j A_j=0$$ and $$\sum^n_{j=1} \alpha_j=1$$. Among other results, it is shown that
(a)
If $$f$$ is a non-negative function on $$[0,\infty)$$ such that $$f(0)=0$$ and $$g(t)=f(\sqrt{t})$$ is convex, then for every unitarily invariant norm, $\left|\left|\left| \sum\limits^n_{j=1} \alpha_j f(|A_j|) \right|\right|\right| \geq \left|\left|\left| f\left(\sqrt{\frac{\alpha_\ell}{1-\alpha_\ell}}|A_\ell|\right) + \sum\limits_{j,k\in S_\ell} f\left(\sqrt{\frac{\alpha_j \alpha_k}{2(1-\alpha_\ell)}} |A_j - A_k|\right)\right|\right|\right|$ for $$\ell=1,\dots,n$$.
(b)
If $$f$$ is a non-negative function on $$[0,\infty)$$ such that $$g(t)=f(\sqrt{t})$$ is concave, then for every unitarily invariant norm, $\left|\left|\left| \sum\limits^n_{j=1} \alpha_j f(|A_j|) \right|\right|\right| \leq \left|\left|\left| f\left(\sqrt{\frac{\alpha_\ell}{1-\alpha_\ell}}|A_\ell|\right) + \sum\limits_{j,k\in S_\ell} f\left(\sqrt{\frac{\alpha_j \alpha_k}{2(1-\alpha_\ell)}} |A_j - A_k|\right)\right|\right|\right|$ for $$\ell=1$$. Here $$S_\ell =\{1,\dots,n\}\setminus \{\ell\}$$.

##### MSC:
 47A30 Norms (inequalities, more than one norm, etc.) of linear operators 47B10 Linear operators belonging to operator ideals (nuclear, $$p$$-summing, in the Schatten-von Neumann classes, etc.) 47B15 Hermitian and normal operators (spectral measures, functional calculus, etc.) 46B20 Geometry and structure of normed linear spaces
Full Text:
##### References:
  Fack, T.; Kosaki, H., Generalized s-numbers of *** -measurable operators, Pac J Math, 123, 269-300, (1986) · Zbl 0617.46063  Simon, B., Trace ideals and their applications, (1979), Cambridge: Cambridge University Press, Cambridge · Zbl 0423.47001  Audenaert, KMR; Kittaneh, F., Problems and conjectures in matrix and operator inequalities, Banach Center Publ, 112, 15-31, (2017) · Zbl 1381.15008  Bhatia, R.; Holbrook, J., On the Clarkson-McCarthy inequalities, Math Ann, 281, 7-12, (1988) · Zbl 0618.47008  Bhatia, R.; Kittaneh, F., Clarkson inequalities with several operators, Bull London Math Soc, 36, 820-832, (2004) · Zbl 1071.47011  Conde, C.; Moslehian, MS, Norm inequalities related to p-Schatten class, Linear Algebra Appl, 498, 441-449, (2016) · Zbl 1341.47011  Hirzallah, O.; Kittaneh, F., Non-commutative Clarkson inequalities for unitarily invariant norms, Pac J Math, 202, 363-369, (2002) · Zbl 1054.47011  Hirzallah, O.; Kittaneh, F., Non-commutative Clarkson inequalities for n-tuples of operators, Integral Equ Oper Theory, 60, 369-379, (2008) · Zbl 1155.47013  Kissin, E., On Clarkson-McCarthy inequalities for n-tuples of operators, Proc Amer Math Soc, 135, 2483-2495, (2007) · Zbl 1140.47005  Gumus, IH; Hirzallah, O.; Kittaneh, F., Estimates for the real and imaginary parts of the eigenvalues of matrices and applications, Linear Multilinear Algebra, 64, 2431-2445, (2016) · Zbl 1361.15021  Horn, RA; Johnson, CR, Matrix analysis, (1985), Cambridge: Cambridge University Press, Cambridge  Gumus, IH; Hirzallah, O.; Kittaneh, F., Eigenvalue localization for complex matrices, Electron J Linear Algebra, 27, 892-906, (2014) · Zbl 1326.15015  Aujla, J.; Silva, F., Weak majorization inequalities and convex functions, Linear Algebra Appl, 369, 217-233, (2003) · Zbl 1031.47007  Hirzallah, O.; Kittaneh, F., Norm inequalities for weighted power means of operators, Linear Algebra Appl, 314, 181-193, (2002) · Zbl 1017.47003  Uchiyama, M., Subadditivity of eigenvalue sums, Proc Amer Math Soc, 134, 1405-1412, (2006) · Zbl 1089.47010  Bourin, J-C; Lee, E-Y, Unitary orbits of Hermitian operators with convex or concave functions, Bull London Math Soc, 44, 1085-1102, (2012) · Zbl 1255.15028  Kosem, T., Inequalities between f(A+B) and f(A)+f(B), Linear Algebra Appl, 418, 153-160, (2006) · Zbl 1105.15016  Bourin, J-C; Uchiyama, M., A matrix subadditivity inequality for f(A+B) and f(A)+f(B), Linear Algebra Appl, 423, 512-518, (2007) · Zbl 1123.15013  Bhatia, R., Matrix analysis, (1997), New York (NY): Springer, New York (NY)  Gohberg, IC; Krein, MG, Introduction to the theory of linear nonselfadjoint operators, 18, (1969), Providence (RI): AMS, Providence (RI)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.