×

zbMATH — the first resource for mathematics

A note on fractional \(p\)-Laplacian problems with singular weights. (English) Zbl 1366.35105
Summary: We study a class of fractional \(p\)-Laplacian problems with weights which are possibly singular on the boundary of the domain. We provide existence and multiplicity results as well as characterizations of critical groups and related applications.

MSC:
35P15 Estimates of eigenvalues in context of PDEs
35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs
35R11 Fractional partial differential equations
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Applebaum, D, Lévy processes, from probability fo finance and quantum groups, Not. Amer. Math. Soc., 51, 1336-1347, (2004) · Zbl 1053.60046
[2] Brasco, L; Franzina, G, Convexity properties of Dirichlet integrals and Picone-type inequalities, Kodai Math. J., 37, 769-799, (2014) · Zbl 1315.47054
[3] Brasco, L; Parini, E, The second eigenvalue of the fractional \(p\)-Laplacian, Adv. Calc. Var., 9, 323-355, (2016) · Zbl 1349.35263
[4] Caffarelli, L.A.: Nonlocal equations, drifts and games. Non. Partial Diff. Eq. Abel Symposia 7, 37-52 (2012) · Zbl 1266.35060
[5] Cabré, X; Sire, Y, Nonlinear equations for fractional Laplacians I: regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. Henri Poincaré Nonlinear Anal., 31, 23-53, (2014) · Zbl 1286.35248
[6] Dyda, B, A fractional order Hardy inequality, Illinois J. Math., 48, 575-588, (2004) · Zbl 1068.26014
[7] Hashimoto, S; Otani, M, Elliptic equations with singularity on the boundary, Diff. Integral Equ., 12, 339-349, (1999) · Zbl 1053.35048
[8] Hashimoto, S; Otani, M, Sublinear elliptic equations and eigenvalue problems with singular coefficients, Commun. Appl. Anal., 6, 535-547, (2002) · Zbl 1084.35511
[9] Ladyzhenskaya, O., Uraltseva, N.: Linear and quasilinear elliptic equations. Academic Press, Dublin (1968)
[10] Fadell, ER; Rabinowitz, PH, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math., 45, 139-174, (1978) · Zbl 0403.57001
[11] Fan, X; Han, X, Existence and multiplicity of solutions for \(p(x)\)-Laplacian equations in \(\mathbb{R}^N\), Nonlinear Anal., 59, 173-188, (2004) · Zbl 1134.35333
[12] Franzina, G; Palatucci, G, Fractional \(p\)-eigenvalues, Riv. Mat. Univ. Parma, 5, 315-328, (2014) · Zbl 1327.35286
[13] Iannizzotto, A; Liu, S; Perera, K; Squassina, M, Existence results for fractional \(p\)-Laplacian problems via Morse theory, Adv. Calc. Var., 9, 101-125, (2016) · Zbl 06567151
[14] Iannizzotto, A., Mosconi, S., Squassina, M.: Global Hölder regularity for the fractional \(p\)-Laplacian. Rev. Mat. Iberoam (to appear) · Zbl 1433.35447
[15] Iannizzotto, A; Squassina, M, Weyl-type laws for fractional \(p\)-eigenvalue problems, Asymptot. Anal., 88, 233-245, (2014) · Zbl 1296.35103
[16] Ihnatsyeva, L; Lehrbäck, J; Tuominen, H; Vähäkangas, A, Fractional Hardy inequalities and visibility of the boundary, Studia Math., 224, 47-80, (2014) · Zbl 1325.46040
[17] Lindgren, E; Lindqvist, P, Fractional eigenvalues, Calc. Var. PDE, 49, 795-826, (2014) · Zbl 1292.35193
[18] Mosconi, S; Perera, K; Squassina, M; Yang, Y, The Brezis-Nirenberg problem for the fractional \(p\)-Laplacian, Calc. Var. PDE, 55, 105, (2016) · Zbl 1361.35198
[19] Perera, K, Nontrivial critical groups in \(p\)-Laplacian problems via the Yang index, Topol. Methods Nonlinear Anal., 21, 301-309, (2003) · Zbl 1039.47041
[20] Perera, K., Agarwal, R.P., O’Regan, D.: Morse theoretic aspects of \(p\)-Laplacian type operators, 161 Mathematical Surveys and Monographs. Amer. Math. Soc, Providence, RI (2010) · Zbl 1053.35048
[21] Perera, K; Sim, I, \(p\)-Laplace equations with singular weights, Nonlinear Anal., 99, 167-176, (2014) · Zbl 1290.35130
[22] Ros-Oton, X; Serra, J, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl., 101, 275-302, (2014) · Zbl 1285.35020
[23] Ros-Oton, X; Serra, J, The pohožaev identity for the fractional Laplacian, Arch. Rat. Mech. Anal., 213, 587-628, (2014) · Zbl 1361.35199
[24] Kajikiya, R, Superlinear elliptic equations with singular coefficients on the boundary, Nonlinear Anal., 73, 2117-2131, (2010) · Zbl 1197.35112
[25] Servadei, R; Valdinoci, E, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389, 887-898, (2012) · Zbl 1234.35291
[26] Servadei, R; Valdinoci, E, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367, 67-102, (2015) · Zbl 1323.35202
[27] Usami, H, On a singular elliptic boundary value problem in a ball, Nonlinear Anal., 13, 1163-1170, (1989) · Zbl 0707.35058
[28] Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996) · Zbl 0856.49001
[29] Zhao, J.F.: Structure Theory of Banach Spaces. Wuhan University Press, Wuhan (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.