zbMATH — the first resource for mathematics

On the inseparable degree of the Gauss map of higher order for space curves. (English) Zbl 0752.14032
Let \(X\) be a non-degenerate curve in the projective space \(\mathbb{P}^ N\) over an algebraically closed field of characteristic \(p>0\). The authors determine the inseparable degree of the Gauss map defined by the osculating \(m\)-planes of \(X\). More precisely, let \(x\) be a general point of \(X\), \(H\) a general hyperplane containing the osculating \(m\)-plane to \(X\) at \(x\), and \(b_{m+1}\) the intersection multiplicity of \(H\) and \(X\) in \(x\). Then the inseparable degree of the Gauss map of order \(m\) equals the highest power of \(p\) dividing \(b_{m+1}\).

14H50 Plane and space curves
Full Text: DOI
[1] A. Garcia and J. F. Voloch: Duality for projective curves (preprint). · Zbl 0766.14021 · doi:10.1007/BF01237362
[2] A. Hefez: Letter to M. Homma dated 19 September 1990. · Zbl 0974.51001
[3] A. Hefez and J. F. Voloch: Frobenius non classical curves. Arch. Math., Basel, 54, 263-273 (1990). · Zbl 0662.14016 · doi:10.1007/BF01188523
[4] M. Homma: Funny plane curves in characteristic p>0. Comm. Algebra, 15, 1469-1501 (1987). · Zbl 0623.14014 · doi:10.1080/00927878708823481
[5] H. Kaji: On the Gauss maps of space curves in characteristic p. Compositio Math., 70, 177-197 (1989). · Zbl 0692.14015 · numdam:CM_1989__70_2_177_0 · eudml:89960
[6] H. Kaji: On the inseparable degrees of the Gauss maps and the projection of the conormal variety to the dual of higher order for space curves. Math. Ann. (to appear). · Zbl 0734.14017 · doi:10.1007/BF01444633 · eudml:164926
[7] D. Laksov: Wronskians and Plucker formulas for linear systems on curves. Ann. Sci. Ecole Norm. Sup., (4) 17, 45-66 (1984). · Zbl 0555.14008 · numdam:ASENS_1984_4_17_1_45_0 · eudml:82136
[8] F.K.Schmidt: Die Wronskische Determinante in Beliebigen differenzierbaren Funktionenkorpern. Math. Z., 45, 62-74 (1939). · Zbl 0020.10201 · doi:10.1007/BF01580273 · eudml:168839
[9] K. 0. Stohr and J. F. Voloch: Weierstrass points and curves over finite fields. Proc. London Math. Soc, (3) 52, 1-19 (1986). · Zbl 0593.14020 · doi:10.1112/plms/s3-52.1.1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.