×

zbMATH — the first resource for mathematics

Duality of space curves and their tangent surfaces in characteristic \(p>0\). (English) Zbl 0766.14022
Let \(X\) be a nondegenerate curve in projective \(N\)-space over an algebraically closed field. Let \(0=b_ 0<\dots<b_ N\) be the sequence of integers consisting of the possible intersection multiplicities of \(X\) with hyperplanes at a general point of \(X\). In characteristic 0, there is only one possibility for such a sequence, namely \(0,1,\dots,N\). For \(N=3\), in positive characteristic, there are 5 possible types of sequences \(b_ 0,\dots,b_ 3\). The author characterizes these types in terms of the reflexivity (or nonreflexivity) of \(X\) and of its tangent surface Tan\(X\).

MSC:
14H50 Plane and space curves
14G15 Finite ground fields in algebraic geometry
14N05 Projective techniques in algebraic geometry
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Garcia, A., Voloch, J. F., Wronskians and linear independence in fields of prime characteristic,Munuscripta Math. 59 (1987), 457–469. · Zbl 0637.12015 · doi:10.1007/BF01170848
[2] Hefez, A., Kleiman, S. L., Notes on duality of projective varieties,Geometric today, Birkhäuser, Prog. Math.60 (1985), 143–183. · Zbl 0579.14047
[3] Homma, M., Funny plane curves in characteristicp>0,Comm. Algebra 15 (1987), 1469–1501. · Zbl 0623.14014 · doi:10.1080/00927878708823481
[4] Homma, M., Smooth curves with smooth dual varieties,Comm. Algebra 16 (1988), 1507–1512. · Zbl 0646.14027 · doi:10.1080/00927878808823640
[5] Homma, M., Reflexivity of tangent varieties associated with a curve,Ann. Mat. Pura Appl. (IV) 156 (1990), 195–210. · Zbl 0722.14016 · doi:10.1007/BF01766979
[6] Kleiman, S. L., Tangency and duality,Proc. 1984 Vancouver Conf. in Algebraic Geometry. CMS Proc.6 (1986), 163–226. · Zbl 0601.14046
[7] Komiya, K., Algebraic curves with non-classical types of gap sequences for genus three and four,Hiroshima Math. J. 8 (1978), 371–400. · Zbl 0406.14007
[8] Laksov, D., Weierstrass points on curves,Astérisque 87/88 (1981), 221–247. · Zbl 0489.14007
[9] Laksov, D., Wronskians and Plücker formulas for linear systems on curves,Ann. Scient. Ec. Norm. Sup. 17 (1984), 45–66. · Zbl 0555.14008
[10] Matzat, B. H.,Ein Vortrag über Weierstrasspunkte, Karlsruhe, 1975.
[11] Schmidt, F. K., Die Wronskisch Determinante in belebigen differenzierbaren Funktionenkörpern,Math. Z. 45 (1939), 62–74. · Zbl 0020.10201 · doi:10.1007/BF01580273
[12] Schmidt, F. K., Zur arithmetischen Theorie der algebraischen Funktionen II – Allgemeine Theorie der Weierstrass. punkte,Math. Z. 45 (1939), 75–96. · Zbl 0020.10202 · doi:10.1007/BF01580274
[13] Stöhr, K. O. andVoloch, J. F., Weierstrass points and curves over finite fields,Proc. London Math. Soc. (3) 52 (1986), 1–19. · Zbl 0593.14020 · doi:10.1112/plms/s3-52.1.1
[14] Zariski, O. andSamuel, P.,Commutative algebra II, Von Nostrand, Princeton, 1960. · Zbl 0121.27801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.